训练数据有偏见或训练数据不足:AI模型的好坏取决于训练所使用的数据。如果训练数据有偏见、不完整或不足,AI模型可能会基于其对所访问数据的有限理解而产生幻觉。
在使用开放的互联网数据训练大型语言模型的情况下,这一点尤其令人担忧,因为互联网中有偏见和错误的信息泛滥。
过度拟合:当AI模型与训练数据过度拟合时,它可能会开始生成对训练数据过于具体的输出,不能很好地推广到新数据。这可能导致模型生成幻觉或不相关的输出。
上下文理解缺乏:缺乏上下文理解的AI模型可能会产生脱离上下文或不相关的输出。这可能导致模型生成幻觉或荒谬的输出。
领域知识有限:为特定领域或任务设计的AI模型在接受其领域或任务之外的输入时可能会产生幻觉。这是因为它们可能缺乏生成相关输出所需的知识或背景。
当模型对不同语言的理解有限时,就会出现这种情况。尽管一个模型可以在多种语言的大量词汇上进行训练,但它可能缺乏文化背景、历史和细微差别,无法正确地将概念串在一起。
对抗攻击:不同于组建一支团队“攻破”模型以改进模型的红蓝对抗,AI模型也易受对抗攻击。当恶意攻击者故意操纵模型的输入时,可能会导致它生成不正确或恶意的输出。
模型架构:AI模型架构也会影响幻觉产生的容易程度。由于复杂性增加,具有更多分层或更多参数的模型可能更容易产生幻觉。