导图社区 函数思维导图
本章搭建了高中函数知识体系,从内容和思想层面上划分为两部分,接着将内容划分为两个体系,分别对应着必修一和选修的内容;整个体系相对完整,知识脉络清晰,对同学们把握高中函数知识板块有非常好的帮助,适用于刚学习必修一或者高考一轮复习的同学们学习使用。
充分必要条件与全称存在量词知识点梳理,充分必要条件指对于若p则q类型,p为条件,q为结论;全称量词和全称命题指含有全称量词的命题,叫做全称命题、含有存在量词的命题,叫做特称命题。
高一集合知识点梳理,本图帮助大家搭建集合章节的框架:元素与集合的关系只有两种,属于和不属于,一起来看集合的知识。
社区模板帮助中心,点此进入>>
安全教育的重要性
个人日常活动安排思维导图
西游记主要人物性格分析
17种头脑风暴法
如何令自己更快乐
头脑风暴法四个原则
思维导图
第二职业规划书
记一篇有颜又有料的笔记-by babe
伯赞学习技巧
函数
两个体系
以初等函数性质 为核心的体系
四类函数
组合函数
函数形式
处理思想
分而治之,逐个研究,将其视为几个初等函数处理
复合函数
换元法化繁为简
分段函数
“一国两制”
抽象函数
联想模型,巧妙赋值
八大问题
三要素
定义域
常见函数的定义域
分式函数分母不为0
根式函数被开方数非负
0次幂函数底数不为0
对数函数真数非负
只需满足每个子函数都有意义
解析式
直接代入法
换元法
已知函数类型,求函数解析式
待定系数法
含有
构建方程组,解方程
值域
二次函数
配方法
分式函数
分离常数法
其他函数
单调性法、图像法
四性质
单调性
单调递增
单调递减
奇偶性
类型
非奇非偶、既是奇又是偶、奇函数、偶函数
判定
方法
步骤
一看定义域,二断奇偶性
对称性
关于x=a对称
括号里面两个数和的一半若为常数a,则有对称轴x=a
关于(a,0)对称
自变量和的一半为常数a,两个f和为0,则有对称中心(a,0)
周期性
一图像
图像变换
平移变换
上加下减,左加右减
对称变换
伸缩变换
类比三角函数,详见三角函数一章
图像的辨识
一看函数奇偶性
二看函数关键值
三看函数单调性
数形结合
以导数为核心工具的体系
导数的概念和几何意义
导数的运算
基本导数表
四则运算法则
复合函数求导法则
类比摘面具,“由外到内,层层求导”
求导顺序: 先整体:四则运算 再局部:复合函数求导 归根源:基本导数表
切线问题
求在某点的切线方程
求过某点的切线方程
切线衍生问题
求曲线上的点到某直线的最短距离
公切线问题
导数的应用
导数与函数的单调性
关系
解析式明确
判断单调性、求解单调区间
解析式中含有参数
分类讨论
导数与函数的极值/最值
极值
最值
在开区间,若有最值,一定在极值点处取到最值
在闭区间,若有最值,则在极值点或区间端点处取到最值
导数的综合问题
导数在恒成立问题的应用
导数在不等式证明中的应用
导数在函数零点问题的应用
五位一体
方程
不等式
不等式不好求解,可以先将其转成方程,方程的根即为不等式的临界值;方程是否有根不好判断,我们可以转化成判断两函数图像是否有交点
零点
图像
在一元二次不等式的解法中,我们就是将其零点标注在图像里,然后确定开口方向,即可从图获得解集