导图社区 高数第一章
导数第一章思维导图,从函数、极限、函数的连续性这三个大的方面作了阐述。
高数第二章知识点总结,从导数的定义、微分的定义、可导、可微与连续三者之间的关系、导数的计算、高阶导数公式几个部分的知识汇总。
导数第二章知识总结。包括中值定理、函数单调性与凹凸性、渐近线与曲率这三个部分的知识点,分别做了概括梳理。
社区模板帮助中心,点此进入>>
论语孔子简单思维导图
《傅雷家书》思维导图
《童年》读书笔记
《茶馆》思维导图
《朝花夕拾》篇目思维导图
《昆虫记》思维导图
《安徒生童话》思维导图
《鲁滨逊漂流记》读书笔记
《这样读书就够了》读书笔记
妈妈必读:一张0-1岁孩子认知发展的精确时间表
高数第一章
三、函数的连续性
1 函数的连续性定义
2 函数的间断点分类
第一类间断点 (左右极限都存在)
可去间断点(左极限 = 右极限)
跳跃间断点(左极限≠右极限)
第二类间断点
除第一类间断点之外的间断点
3 连续函数的运算性质
4 闭区间上连续函数的性质
有界性与最大值最小值定理
介值定理
推论
零点定理
二、极限
1 极限的定义
数列极限的定义
当 x→∞ 时 f(x) 的极限
当 x→x0 时 (x0 为有限值) f(x) 的极限
当 x→x0 时 (x0为有限值) f(x) 的左右极限
2 数列极限的基本性质
极限的唯一性
收敛数列的有界性
收敛数列的保号性
推论1
推论2
收敛数列与其子数列间的关系
3 函数极限的基本性质
函数极限的局部有界性
函数极限的局部保号性
函数极限与数列极限的关系
复合函数的极限
4 无穷小量与无穷大量
定义
无穷小量
无穷大量
性质
性质 1
性质 2
有限个无穷小量的代数和仍是无穷小量
有限个无穷小量的乘积仍是无穷小量
无穷小量与有界量的乘积仍是无穷小量
无穷小量的比较
等价无穷小替换定理
常用等价无穷小
5 极限的四则运算
6 极限存在的判别方法
单调有界定律
夹迫定律
一、函数
函数
函数的定义
设x和y是两个变量(均在实数集R内取值),D是一个给定的非空数集,如果对于每个数x∈D,按照某个对应法则f,变量y都有唯一确定的数值和它对应,则称变量y是变量x的函数,记作y=f(x)。其中D称为函数y=f(x)的定义域,x称为自变量,y称为因变量。函数值f(x)的全体所构成的集合称为函数f的值域。
函数的性质
有界性
设y=f(x)在区间I上有定义,如果存在正数M,对于任意x∈I,恒有|f(x)|≤M,则称y=f(x)在区间I上有界;否则称为无界。 如果存在实数M1,对于任意x∈I,恒有f(x)≤M1,则称y=f(x)在区间I上有上界; 如果存在实数M2,对于任意x∈I,恒有f(x)≥M2,则称y=f(x)在区间I上有下界; y=f(x)在区间I上有界⟺既有上界又有下界。
单调性
设y=f(x)在区间I上有定义,如果∀x1,x2∈I,当x1<x2时,恒有f(x1)<f(x2)(或f(x1)>f(x2)),则称y=f(x)在区间I上是单调增加(或单调减小)的。
周期性
设f(x)的定义域为D,如果存在一个不为零的常数T,使得对于任一x∈D,有x±T∈D且f(x±T)=f(x),则f(x)称为周期函数,T称为f(x)的周期。通常把满足上式的最小正数T称为f(x)的周期。
奇偶性
设f(x)的定义域D关于原点对称,如果对于任一x∈D,恒有f(-x)=f(x)(或f(-x)=-f(x)),则称f(x)为偶函数(或奇函数)。偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
复合函数
设y=f(u),u=φ(x),若φ(x)的值域与f(u)的定义域有非空交集,则由y=f(u)及u=φ(x)可复合而成复合函数y=f[φ(x)],u称为中间变量。
反函数
设y=f(x)的定义域为D,值域为W。若∀y∈W,存在唯一确定的x∈D,满足y=f(x),则得到的x是y的函数,记为x=φ(y),称为y=f(x)的反函数,习惯成记为y=f-1(x)。
隐函数
设有关系式F(x,y)=0,若对∀x∈D,存在唯一确定的y满足F(x,y)=0与x相对应,由此确定的y与x的函数关系y=y(x)称为由方程F(x,y)=0所确定的隐函数。
基本初等函数及初等函数
基本初等函数
幂函数
指数函数
对称函数
三角函数
反三角函数
初等函数
由常数和基本初等函数经过有限次四则运算和有限次的复合运算所构成并可用一个式子表示的函数称为初等函数。