∫a->a,f(x)dx=0.∫a->b,f(x)dx=∫b->a,f(x)dx
f(x属于C[a,b]=>f(x)在[a,b]上可积
f(x属于[a,b],且有有限个第一类间断点=>f(x)在[a,b]上可积
∫0->1,f(x)dx = lim n->无穷 ,1/n 求和 i范围(1->n)f(i/n)
a-b中,if f(x)>=0,则 ∫a->b f(x)dx>=0
a-b中,if f(x)>=g(x),则 ∫a->b f(x)dx>=∫a->b g(x)dx
if f(x)在a->b上可积,则|∫a->b f(x)dx|<=∫a->b |f(x)|dx