导图社区 统计学
统计学思维导图,包括:第一章导论;第二章数据的搜集;第三章数据的图表展示;第四章数据的概括性度量。
债法第八章 多数人之债思维导图,包括:一、可分之债与按份之债;二、连带之债;三、不可分之债。
债法第九章 合同概述思维导图,包括:第一节合同与合同自由和第二节合同的分类两部分内容。希望对你有所帮助!
债法第六章 债的移转思维导图,包括:一、债权让与/转让;二、债务承担/转移;三、合同权利义务的概括转让。
社区模板帮助中心,点此进入>>
论语孔子简单思维导图
《傅雷家书》思维导图
《童年》读书笔记
《茶馆》思维导图
《朝花夕拾》篇目思维导图
《昆虫记》思维导图
《安徒生童话》思维导图
《鲁滨逊漂流记》读书笔记
《这样读书就够了》读书笔记
妈妈必读:一张0-1岁孩子认知发展的精确时间表
统计学
第一章 导论
1.1统计学及其应用领域
定义:收集、处理、分析、解释数据并从数据中得出结论的科学。数据分析方法:描述统计方法与推断统计方法。
应用领域
1.2统计数据的类型
计量尺度:分类、顺序、数值型数据
数据收集方法:观测、实验数据
现象与时间的关系:截面、时间序列、面板数据
1.3基本概念
总体(参数)
样本(统计量)
变量:分类、顺序、数值型(连续、离散)变量
第二章 数据的搜集
2.1数据的来源
间接来源
系统外、系统内
直接来源
调查数据、实验数据
2.2调查方法
概率抽样和非概率抽样 (每种方法的优缺点)
概率抽样:随机不随便,概率 固定不为零,可等可不等
简单随机、分层、整群、系统、多阶段
非概率抽样:不依据随机原则
方便、判断(重点、典型、代表)、自 愿、滚雪球、配额
二者的比较
搜集数据的基本方法 (每种方法的优缺点)
自填式、面访式、电话式
方法的选择
实验方法
实验组和对照组
随机、匹配、双盲
实验中的问题
人的意愿、心理问题、道德问题
实验中的统计
数据的误差
抽样误差
定义理解
影响因素
样本量大小、总体的变异性
非抽样误差
抽样框误差、回答误差(理解误差、记忆误差、有意识误差)、无回答误差、调查员误差、测量误差
误差的控制
抽样误差、非抽样误差
第三章 数据的图表展示
3.1数据的预处理
数据审核
原始数据:完整性审核、准确性审核(误差)
二手数据:适用性审核、时效性审核
数据筛选
定义及内容
数据排序
排序的意义
分类数据排序、数值型数据排序
数据透视表
3.2品质数据的整理与展示(分类)
分类数据
频数和频数分布表(比例、百分比、比率)
图示:条形图、帕累托图、饼图、环形图
顺序数据
累计频数和累计频率
图示:累计频数分布与频率图
3.3数值型数据的整理与展示(分组)
数据分组 -频数分布表
分组方法
按品质变量分组
按数量变量分组
单变量值分组
组距分组(等距/不等距)
图示
分组数据:直方图(与条形图的区别)
未分组数据:茎叶图、箱线图
时间序列数据:线图
多变量数据:散点图2、气泡图3、雷达图n
3.4合理使用图表
鉴别优劣的准则
统计表的涉设计
第四章 数据的概括性度量
4.1集中趋势
分类数据:众数
分组数据
未分组数据:考虑两侧数据组是否对称
顺序数据:中位数和分位数
未分组、分组、数值型
数值型数据:平均数
简单平均数(未分组)
加权平均数(分组)
几何平均数、加权几何平均数
调和平均数
众数、中位数和平均数的比较
适用范围、优缺点
4.2离散程度
分类数据:异众比率
顺序数据:四分位差
数值型数据
极差和平均差
方差、标准差(自由度)
相对位置的度量
标准分数
经验法则(异常值检验)
切比雪夫不等式
相对离散程度:离散系数
4.3偏态与峰态
偏态及偏态系数
峰态及其测度
第八章 假设检验
8.1假设检验的基本问题
假设检验的流程
提出假设
假设(原假设、备择假设)
假设检验
两类错误(弃真错误、取伪错误)
确定适当的检验统计量,并计算检验统计量的值
检验统计量
规定显著性水平(阿尔法)
作出统计决策:利用统计量决策(P值检验)
8.2一个总体参数的检验
8.3两个总体参数的检验
8.4检验问题的进一步说明
第七章 参数估计
7.1参数估计的一般问题
估计量与估计值
点估计与区间估计
区间估计:点估计加减(抽样/)估计标准误
置信水平(度/系数)
置信水平为95%的置信区间
置信区间
一个特定区间不存在“以多大概率包含总体参数”
大置信水平——宽置信区间
大样本——窄置信区间
评价估计量的标准
无偏性(期望)、有效性(方差)、 一致性(极限)
7.2一个总体参数的区间估计
总体均值μ的区间估计(正态/t)
样本均值±分位数值×样本均值的标准误差
方差已知:正态分布z
方差未知
大样本——正态 小样本——t分布
总体比例π的区间估计(正态)
总体服从二项分布,且用正态分布来近似
样本比例±分位数值×样本比例的标准误差
总体方差σ2的区间估计(卡方)
总体服从正态分布
7.3两个总体参数的区间估计
两个总体均值之差的区间估计
独立大样本
正态分布:均值相减,方差相加
独立小样本
方差已知:正态
方差未知(相等或不相等):t分布
匹配
大样本:正态 小样本:t分布
两个总体比例之差的区间估计
正态
两个总体方差比的区间估计
F分布
7.4样本量的确定
估计总体均值时样本量的确定
估计总体比例时样本量的确定
第六章 统计量及其抽样分布
6.1统计量
统计量的概念和抽样分布、 常用统计量、次序统计量、 充分统计量
6.2关于分布的几个概念
总体分布vs样本分布(经验分布) vs抽样分布(理论分布)
6.3由正态分布导出的几个重要分布
卡方分布、t分布、F分布
6.4样本均值的抽样分布与中心极限定理
中心极限定理数学推导
统计量的标准误、估计的标准误
6.5样本比例的抽样分布
样本量充分大时,可用正态分布来近似
6.6两个样本的统计量之差的分布
均值:两个总体均为正态——正态
比例:总体都为大样本,服从二项分布——正态
均值相减,方差相加
6.7关于样本方差的分布
样本方差的分布——服从自由度n-1的卡方分布
两个样本方差比的分布
服从分子自由度为n1-1 分母自由度为n2-1的F分布
统计方法
描述统计
推断统计
参数估计