导图社区 高数-张宇18讲——4.一元函数微分学的计算
18讲的内容其实是30讲的加强版,我是在原30讲上又加入了18讲的知识点补充和题型补充
高数的所以知识几乎都在里面了,除了大纲,一些易错点和考点也在里面有标注。涵盖了多为随机变量及其分布、二次型相关知识总结、随机事件与概率、线性方程组、列式等知识点。
张宇概率9讲是张宇30讲的补充版与加强版,内容更详实,知识点更全面,祝大家考研成功。
张宇线代9讲是张宇30讲的补充和加强版,这个导图比30讲的思维导图内容更详细,知识点更全面,帮你快速掌握二次型相关知识要点。
张宇线代9讲是张宇30讲的补充和加强版,这个导图比30讲的思维导图内容更详细,知识点更全面!
社区模板帮助中心,点此进入>>
英语词性
法理
刑法总则
【华政插班生】文学常识-先秦
【华政插班生】文学常识-秦汉
文学常识:魏晋南北朝
【华政插班生】文学常识-隋唐五代
【华政插班生】文学常识-两宋
民法分论
日语高考動詞の活用
一元函数微分学的概念与应用
导数与微分的计算
概念
导数的概念
△x在出题是一般被广义化成一个复杂函数
必用导数定义
(1)若函数表达式中含有抽象函数符号,且仅知其连续,不知其是否可导时
(2)求分段函数(如带绝对值符号的函数)在分段点处的导数时
(3)复合函数如
母题
微分的概念
增量
微分
可微必可导,可导必可微, 要证其可微,转证其可导
四则运算
复合函数的导数
分段函数的导数
反函数的导数
设y=f(x)可导,且f'(x)≠0,则存在反函数x=y(y),且
且
参数方程所确定的函数的导数
给出极坐标方程
隐函数求导法
对数求导法(多项开方、平方)
根号下取对数不可丢绝对值,但对数函数在取导数时可视绝对值不见
幂指函数求导法
高阶导数
归纳法
莱布尼茨公式
有时对于一个函数求高阶导数较困难时,若能转化成两个函数的乘积形式,亦可用莱布尼茨公式.
泰勒公式
分解后利用公式法
把所求函数分解成已知高阶导数的函数组合
变限积分求导公式
基本求导公式