导图社区 选必一导图
详细涵盖了选择性必修一以及必修二第二章的内容,希望能帮助到你。
编辑于2022-02-12 22:11:56必修二+选必一
第一章 化学反应与能量转化
化学反应的热效应
1、化学反应的反应热
(1)反应热的概念:当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。
(2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。
(3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。
2、化学反应的焓变
(1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。
(2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。
(3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。ΔH<0,反应释放能量,为放热反应。
(4)反应焓变与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如: H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。
3、反应焓变的计算
(1)盖斯定律:对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。
(2)利用盖斯定律进行反应焓变的计算:常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。
化学能转化为电能——电池
1、原电池工作原理
(1)原电池的概念:把化学能转变为电能的装置称为原电池。
(2)Cu-Zn原电池的工作原理: Cu-Zn原电池,其中Zn为负极,Cu为正极,构成闭合回路后的现象是:Zn片逐渐溶解,Cu片上有气泡产生,电流计指针发生偏转。该原电池反应原理为:Zn失电子,负极反应为:ZnZn2++2e-;Cu得电子,正极反应为:2H++2e-H2。电子定向移动形成电流。总反应为:Zn+CuSO4=ZnSO4+Cu。
(3)原电池的电能 若两种金属做电极,活泼金属为负极,不活泼金属为正极;若一种金属和一种非金属做电极,金属为负极,非金属为正极。
2、化学电源
(1)锌锰干电池 负极反应:ZnZn2++2e-; 正极反应:2NH4++2e-2NH3+H2;
(2)铅蓄电池 负极反应:Pb+SO42-PbSO4+2e- 正极反应:PbO2+4H++SO42-+2e-PbSO4+2H2O 放电时总反应:Pb+PbO2+2H2SO4=2PbSO4+2H2O。 充电时总反应:2PbSO4+2H2O=Pb+PbO2+2H2SO4。
(3)氢氧燃料电池 负极反应:2H2+4OH-4H2O+4e- 正极反应:O2+2H2O+4e-4OH- 电池总反应:2H2+O2=2H2O
电能转化为化学能——电解
1、电解的原理
(1)电解定义:在电流作用下,电解质在两个电极上分别发生氧化反应和还原反应的过程。
(2)能量转化形式:电能转化为化学能
(3)电解池构成条件: ①有与电源相连的两个电极。 ②电解质溶液(或熔融盐)。 ③形成闭合回路。
(4)分析电解过程的思维程序 ①首先判断阴、阳极,分析阳极材料是惰性电极还是活泼电极。 ②再分析电解质水溶液的组成,找全离子并分阴、阳两组(不要忘记水溶液中的H+和OH-)。 ③然后排出阴、阳两极的放电顺序 阴极:阳离子放电顺序: Ag+>Fe3+>Cu2+>H+(酸)>Fe2+>Zn2+>H+(水)>Al3+>Mg2+>Na+>Ca2+>K+。 阳极: 活泼电极>S2->I->Br->Cl->OH->含氧酸根离子。 ④分析电极反应,判断电极产物,写出电极反应式,要注意遵循原子守恒和电荷守恒。 ⑤最后写出电解反应的总化学方程式或离子方程式
2、电解原理的应用
1.电解饱和食盐水 (1)电极反应 阳极反应式:2Cl--2e-=Cl2↑(氧化反应) 阴极反应式:2H++2e-=H2↑(还原反应) (2)总反应方程式 2NaCl+2H2O2NaOH+H2↑+Cl2↑ 离子反应方程式:2Cl-+2H2O 2OH-+H2↑+Cl2↑ (3)应用:氯碱工业制烧碱、氯气和氢气
2.电镀 以金属表面镀银为例, (1)镀件作阴极,镀层金属银作阳极。 (2)电解质溶液是AgNO3溶液等含镀层金属阳离子的盐溶液。 (3)电极反应: 阳极:Ag-e-=Ag+; 阴极:Ag++e-=Ag (4)特点:阳极溶解,阴极沉积,电镀液的浓度不变。
3.电解精炼铜 (1)电极材料:阳极为粗铜;阴极为纯铜。 (2)电解质溶液:含Cu2+的盐溶液。 (3)电极反应: 阳极: Zn-2e-=Zn2+ Fe-2e-=Fe2+ Ni-2e-=Ni2+ Cu-2e-=Cu2+; 阴极: Cu2++2e-=Cu
金属的腐蚀与防护
1.金属腐蚀的本质 金属原子失去电子变为金属阳离子,金属发生氧化反应。
2.金属腐蚀的类型 (1)化学腐蚀与电化学腐蚀 (2)析氢腐蚀与吸氧腐蚀
以钢铁的腐蚀为例进行分析:
3.金属的防护 (1)电化学防护 ①牺牲阳极的阴极保护法—原电池原理 a.负极:比被保护金属活泼的金属; b.正极:被保护的金属设备。 ②外加电流的阴极保护法—电解原理 a.阴极:被保护的金属设备; b.阳极:惰性金属或石墨。 (2)改变金属的内部结构,如制成合金、不锈钢等。 (3)加防护层,如在金属表面喷油漆、涂油脂、电镀、喷镀或表面钝化等方法
第二章 化学反应的方向、限度与速率
化学反应的方向
1、反应焓变与反应方向 放热反应多数能自发进行,即ΔH<0的反应大多能自发进行。有些吸热反应也能自发进行。如NH4HCO3与CH3COOH的反应。有些吸热反应室温下不能进行,但在较高温度下能自发进行,如CaCO3高温下分解生成CaO、CO2。
2、反应熵变与反应方向 熵是描述体系混乱度的概念,熵值越大,体系混乱度越大。反应的熵变ΔS为反应产物总熵与反应物总熵之差。产生气体的反应为熵增加反应,熵增加有利于反应的自发进行。
3、焓变与熵变对反应方向的共同影响 ΔH-TΔS<0反应能自发进行。 ΔH-TΔS=0反应达到平衡状态。 ΔH-TΔS>0反应不能自发进行。 在温度、压强一定的条件下,自发反应总是向ΔH-TΔS<0的方向进行,直至平衡状态
化学反应的速率
1、概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表 示。 计算公式: ①单位:mol/(L·s)或mol/(L·min) ②B为溶液或气体,若B为固体或纯液体不计算速率。 ③以上所表示的是平均速率,而不是瞬时速率。 ④重要规律: 速率比=方程式系数比 变化量比=方程式系数比
2、影响化学反应速率的因素:
(1)内因:化学键的强弱与化学反应速率的关系。例如:在相同条件下,氟气与氢气在暗处就能发生爆炸(反应速率非常大);氯气与氢气在光照条件下会发生爆炸(反应速率大);溴气与氢气在加热条件下才能反应(反应速率较大);碘蒸气与氢气在较高温度时才能发生反应,同时生成的碘化氢又分解(反应速率较小)。
(2)外因
1.压强条件 对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小。若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变。因为浓度不变,单位体积内活化分子数就不变。但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加。若体积可变,恒压(加入不参加此化学反应的气体)反应速率就减小。因为体积增大,反应物的物质的量不变,反应物的浓度减小,单位体积内活化分子数就减小
2.温度条件 只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因)。当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)。
3.催化剂 使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之。催化剂只能改变化学反应速率,却改不了化学反应平衡。
4.条件浓度 当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的。化学反应的过程,就是反应物分子中的原子,重新组合成生成物分子的过程。反应物分子中的原子,要想重新组合成生成物的分子,必须先获得自由,即:反应物分子中的化学键必须断裂。化学键的断裂是通过分子(或离子)间的相互碰撞来实现的,并非每次碰撞都能是化学键断裂,即并非每次碰撞都能发生化学反应,能够发生化学反应的碰撞是很少的。 活化分子比普通分子具有更高的能量,才有可能撞断化学键,发生化学反应。当然,活化分子的碰撞,只是有可能发生化学反应。而并不是一定发生化学反应,还必须有合适的取向。在其它条件不变时,对某一反应来说,活化分子在反应物中所占的百分数是一定的,即单位体积内活化分子的数目和单位体积内反应物分子的总数成正比,即活化分子的数目和反应物的浓度成正比。 因此,增大反应物的浓度,可以增大活化分子的数目,可以增加有效碰撞次数,则增大反应物浓度,可以使化学反应的速率增大。
5.其他因素 增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响。
化学反应的限度
1、在一定条件下,当一个可逆反应进行到正向反应速率与逆向反应速率相等时,反应物和生成物的浓度不再改变,达到表面上静止的一种“平衡状态”,这就是这个反应所能达到的限度,即化学平衡状态。 化学平衡的移动受到温度、反应物浓度、压强等因素的影响。催化剂只改变化学反应速率,对化学平衡无影响。 在相同的条件下同时向正、逆两个反应方向进行的反应叫做可逆反应。通常把由反应物向生成物进行的反应叫做正反应。而由生成物向反应物进行的反应叫做逆反应。 在任何可逆反应中,正方应进行的同时,逆反应也在进行。可逆反应不能进行到底,即是说可逆反应无论进行到何种程度,任何物质(反应物和生成物)的物质的量都不可能为0
2、化学平衡状态的特征:逆、动、等、定、变。 ①逆:化学平衡研究的对象是可逆反应。 ②动:动态平衡,达到平衡状态时,正逆反应仍在不断进行。 ③等:达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。即v正=v逆≠0。 ④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。 ⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡
3、判断化学平衡状态的标志: ①VA(正方向)=VA(逆方向)或nA(消耗)=nA(生成)(不同方向同一物质比较) ②各组分浓度保持不变或百分含量不变 ③借助颜色不变判断(有一种物质是有颜色的) ④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应)
化学反应条件的优化——工业合成氨
1、合成氨反应的限度:根据计算可知,合成氨反应是在298 K时能正向自发进行的放热反应,同时也是气体的物质的量减小的滴减反应。因此,降低温度、增大压强将有利于化学平衡向生成氨的方向移动。在一定的温度、压强下,反应物氢气、氢气的体积比为1:3时平衡混合物中気的含量最高。
2、合成氨反应的速率:由反应速率与参与反应的物质浓度的关系式可知,合成氨反应的速率与氨气浓度的1次方成正比,与氢气浓度的1.5次方成正比,与氨气浓度的1次方成反比。在反应过程中,随着氨的浓度增大,反应速率会逐渐降低,因此为了保持足够高的反应速率,应在反应达到一定转化率时将氨从混合气中分离出去。在其他条件相同的情况下,有催化剂存在和无催化剂存在时的反应速率常数之比表明,使用催化剂可以使合成反应的速率提高上万亿倍。温度对合成氨反应的速率也有显著影响:温度越高,反应进行得越快。
3、合成氨生产的适宜条件:在合成氨生产中,达到高转化率与高反应速率所需要的条件有时是相互矛盾的。例如,从化学平衡的角度分析,在氨气和氢气的物质的量之比为1:3时平衡转化率最高。根据反应速率与参与反应的物质的浓度关系式分析,提高氢气的压强似乎更有利于提高合成氨反应的速率,但是,氨气在催化剂上的吸附分解为总反应中最慢的步骤,即这是影响反应速率的关键步骤。实验表明,适当提高氢气的比例,使氨气和氢气的物质的量之比为1:2.8时更能加快合成氨反应的进行。因此,选择合成复生产的条件时,既不应片面地追求高转化率,也不应只追求高反应速率,而应该寻找以较高的反应速率获取适当转化率的反应条件。此外,还应该考虑原料的价格、未转化的合成气(氨气和氢气)的循环使用,反应热的综合利用等问题。
第三章 物质在水溶液中的行为
水与水溶液
1、水的电离:H2O=H++OH- 水的离子积常数KW=[H+][OH-],25℃时,KW=1.0×10-14mol2·L-2。温度升高,有利于水的电离, KW增大。
2、溶液的酸碱度 室温下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7 酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7 碱性溶液:[H+]<[OH-],[OH-]>1.0×10-7mol·L-1,pH>7
3、电解质在水溶液中的存在形态
(1)强电解质 强电解质是在稀的水溶液中完全电离的电解质,强电解质在溶液中以离子形式存在,主要包括强酸、强碱和绝大多数盐,书写电离方程式时用“=”表示。
(2)弱电解质 在水溶液中部分电离的电解质,在水溶液中主要以分子形态存在,少部分以离子形态存在,存在电离平衡,主要包括弱酸、弱碱、水及极少数盐,书写电离方程式时用可逆符号表示。
弱电解质的电离 盐的水解
1、弱电解质的电离平衡。
1.弱电解质与化合物类型的关系:强电解质主要是大部分离子化合物及某些共价化合物,弱电解质主要是某些共价化合物。
2.弱电解质的电离概念 电离平衡的建立: 在一定条件下(如温度、压强等),当弱电解质电离产生离子的速率和离子结合成分子的速率相等时,电离过程达到了平衡。
3.外因对电离平衡的影响
(1)浓度:在一定温度下,同一弱电解质溶液,浓度越小,越易电离。
(2)温度:温度越高,电离程度越大。
(3)同离子效应:加入与弱电解质具有相同离子的电解质时,可使电离平衡向结合成弱电解质分子的方向移动。
(4)化学反应:加入能与弱电解质电离出的离子反应的物质时,可使电离平衡向电离方向移动。
4.例子:以0.1 mol·L-1 CH3COOH溶液为例,下图是外界条件对CH3COOH=CH3COO-+H+ΔH>0的影响
子主题
5.电离平衡常数特点
(1)电离平衡常数与温度有关,与浓度无关,升高温度,K值增大。
(2)电离平衡常数反映弱电解质的相对强弱,K越大,表示弱电解质越易电离,酸性或碱性越强。 例如,在25 ℃时,K(HNO2)=4.6×10-4,K(CH3COOH)=1.8×10-5,因而HNO2的酸性比CH3COOH强。
(3)多元弱酸的各级电离常数的大小关系是K1≫K2≫K3……,故其酸性取决于第一步电离。
2、盐的水解
1、盐类水解的定义 在溶液中,盐电离出来的离子和水电离出来的氢离子或者氢氧根离子结合,生成弱电解质的反应,叫做盐类的水解。 其实质就是:盐中的弱离子(弱酸根离子或弱碱阳离子)与水电离的氢离子或者是氢氧根离子结合成难电离的分子或离子,从而破坏水的电离平衡。
2、盐类水解的规律: 无弱不水解,有弱才水解,越弱越水解,双弱双水解,谁强显谁性。
3、盐类水解的表示方法: 盐类的水解用水解方程式表示。 盐类水解程度一般都很小,水解产物也很少,通常不产生沉淀或气体,所以书写水解方程式时不用气体和沉淀符号。 盐类的水解是可逆反应,除发生强烈的双水解外,一般都用可逆符号。 多元弱酸盐的水解是分步进行的,用分步水解离子方程式表示。
(1)弱酸阴离子的水解
(2)弱碱阳离子的水解
4.影响盐类水解的因素
(1)内因:盐的性质,越弱越水解
(2)外因: 温度:升高温度,促进水解; 浓度:浓度越小,水解程度越大; 外加酸碱:促进或者抑制水解。
5.酸式盐溶液酸碱性的判断
(1)强酸的酸式盐,只电离不水解,溶液显酸性。
(2)弱酸的酸式盐溶液,酸碱性取决于酸式酸根离子的电离程度和水解程度。
电离程度大于水解程度,溶液显酸性: 例如,亚硫酸氢钠溶液中,亚硫酸氢根的电离大于水解,所以亚硫酸氢钠溶液显酸性。
电离程度小于水解程度,溶液显碱性: 例如,碳酸氢钠溶液中,碳酸氢根的水解程度大于电离,所以碳酸氢钠溶液显碱性。
沉淀溶解平衡
1、沉淀溶解平衡与溶度积
(1)概念:当固体溶于水时,固体溶于水的速率和离子结合为固体的速率相等时,固体的溶解与沉淀的生成达到平衡状态,称为沉淀溶解平衡。其平衡常数叫做溶度积常数,简称溶度积,用Ksp表示。 溶解平衡的表达式:MmAn mMn+(aq)+nAm-(aq);
(2)溶度积Ksp的特点 Ksp只与难溶电解质的性质和温度有关,与沉淀的量无关,且溶液中离子浓度的变化能引起平衡移动,但并不改变溶度积。 Ksp反映了难溶电解质在水中的溶解能力。 溶解平衡的特征:溶解平衡同样具有:逆、等、动、定、变等特征。
2、影响沉淀溶解平衡的内因:难溶电解质本身的性质。绝对不溶的电解质是没有的。同是难溶电解质,溶解度差别也很大。 影响沉淀溶解平衡的外因:浓度、温度、同离子效应。
3、溶度积规则:在一定温度下,在难溶电解质的饱和溶液中,各离子浓度幂之乘积为一常数,称为溶度积常数,简称溶度积。用符号Ksp表示。对于AmBn型电解质来说,其溶度积的公式是:
4、沉淀的溶解
(1)生成弱电解质。如生成弱酸、弱碱、水或微溶气体使沉淀溶解。
(2)发生氧化还原反应,即利用发生氧化还原反应降低电解质离子浓度的方法使沉淀溶解。
(3)生成难电离的配离子,指利用络合反应降低电解质离子浓度的方法使沉淀溶解。
5、沉淀的转化:沉淀的转化的实质就是沉淀溶解平衡的移动。溶液中的沉淀反应总是向着离子浓度减少的方向进行,简而言之,即溶解度大的生成溶解度小的,溶解度小的生成溶解度更小的。
离子反应
1、离子反应发生的条件
(1)生成沉淀 既有溶液中的离子直接结合为沉淀,又有沉淀的转化。
(2)生成弱电解质 主要是H+与弱酸根生成弱酸,或OH-与弱碱阳离子生成弱碱,或H+与OH-生成H2O。
(3)生成气体 生成弱酸时,很多弱酸能分解生成气体。
(4)发生氧化还原反应 强氧化性的离子与强还原性离子易发生氧化还原反应,且大多在酸性条件下发生。
2、离子反应能否进行的理论判据
(1)根据焓变与熵变判据 对ΔH-TΔS<0的离子反应,室温下都能自发进行。
(2)根据平衡常数判据 离子反应的平衡常数很大时,表明反应的趋势很大。
3、离子反应的应用
(1)判断溶液中离子能否大量共存 相互间能发生反应的离子不能大量共存,注意题目中的隐含条件。
(2)用于物质的定性检验 根据离子的特性反应,主要是沉淀的颜色或气体的生成,定性检验特征性离子。
(3)用于离子的定量计算 常见的有酸碱中和滴定法、氧化还原滴定法。
(4)生活中常见的离子反应。 硬水的形成及软化涉及到的离子反应较多,主要有: Ca2+、Mg2+的形成。 CaCO3+CO2+H2O=Ca2++2HCO3- MgCO3+CO2+H2O=Mg2++2HCO3- 加热煮沸法降低水的硬度: Ca2++2HCO3-CaCO3↓+CO2↑+H2O Mg2++2HCO3-MgCO3↓+CO2↑+H2O 或加入Na2CO3软化硬水: Ca2++CO32-=CaCO3↓,Mg2++CO32-=MgCO3↓
第二章 化学键 化学反应规律
化学键与物质构成
1、化学键:原子间的强相互作用。化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。
2、离子键和共价键
(1)阴阳离子之间通过静电作用形成的化学键,叫做离子键
(2)原子之间,通过共用电子对形成的化学键,叫做共价键
在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。
由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。
3、离子化合物与共价化合物
(1)由阴阳离子构成的化合物称为离子化合物(大部分盐,包括所有铵盐,强碱,大部分金属氧化物,金属氢化物。)
(2)由原子通过共价键构成的化合物称为共价化合物(非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。)
化学反应与能量转化
1、化学能与热能
(1)在任何的化学反应中总伴有能量的变化。 原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。E反应物总能量>E生成物总能量,为放热反应。E反应物总能量<E生成物总能量,为吸热反应。
(2)常见的放热反应和吸热反应(最终表现为吸收热量为吸热反应;最终表现为放出热量为放热反应) 常见的放热反应:①所有的燃烧与缓慢氧化。②酸碱中和反应。③金属与酸、水反应制氢气。④大多数化合反应(特殊:C+CO2= 2CO是吸热反应)。 常见的吸热反应:①以C、H2、CO为还原剂的氧化还原反应如:C(s)+H2O(g) = CO(g)+H2(g)。②铵盐和碱的反应如Ba(OH)2•8H2O+NH4Cl=BaCl2+2NH3↑+10H2O③大多数分解反应如KClO3、KMnO4、CaCO3的分解等。
2、化学能与电能
(1)化学能转化为电能的方式: 电能(电力)火电(火力发电)化学能→热能→机械能→电能 缺点:环境污染、低效 原电池将化学能直接转化为电能优点:清洁、高效
(2)原电池原理:
1)概念:把化学能直接转化为电能的装置叫做原电池
2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。
3)①有活泼性不同的两个电极; ②电解质溶液 ③闭合回路 ④自发的氧化还原反应
4)电极名称及发生的反应: 负极:较活泼的金属作负极,负极发生氧化反应, 电极反应式:较活泼金属-ne-=金属阳离子 负极现象:负极溶解,负极质量减少。 正极:较不活泼的金属或石墨作正极,正极发生还原反应, 电极反应式:溶液中阳离子+ne-=单质 正极的现象:一般有气体放出或正极质量增加。
5)原电池正负极的判断方法: ①依据原电池两极的材料: 较活泼的金属作负极(K、Ca、Na太活泼,不能作电极); 较不活泼金属或可导电非金属(石墨)、氧化物(MnO2)等作正极。 ②根据电流方向或电子流向:(外电路)的电流由正极流向负极;电子则由负极经外电路流向原电池的正极。 ③根据内电路离子的迁移方向:阳离子流向原电池正极,阴离子流向原电池负极。 ④根据原电池中的反应类型: 负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。 正极:得电子,发生还原反应,现象是常伴随金属的析出或H2的放出。
6)原电池电极反应的书写方法: (i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。因此书写电极反应的方法归纳如下: ①写出总反应方程式。 ②把总反应根据电子得失情况,分成氧化反应、还原反应。 ③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。 (ii)原电池的总反应式一般把正极和负极反应式相加而得。
7)原电池的应用: ①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。 ②比较金属活动性强弱。 ③设计原电池。 ④金属的防腐。 ⑤化学反应的速率和限度
化学反应的快慢和限度
1、化学反应的速率
(1)概念:化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。 计算公式:v(B)==△C/△t ①单位:mol/(L•s)或mol/(L•min) ②B为溶液或气体,若B为固体或纯液体不计算速率。 ③重要规律:速率比=方程式系数比
(2)影响化学反应速率的因素: 内因:由参加反应的物质的结构和性质决定的(主要因素)。 外因: ①温度:升高温度,增大速率 ②催化剂:一般加快反应速率(正催化剂) ③浓度:增加C反应物的浓度,增大速率(溶液或气体才有浓度可言) ④压强:增大压强,增大速率(适用于有气体参加的反应) ⑤其它因素:如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。
2、化学反应的限度——化学平衡
(1)化学平衡状态的特征:逆、动、等、定、变。 ①逆:化学平衡研究的对象是可逆反应。 ②动:动态平衡,达到平衡状态时,正逆反应仍在不断进行。 ③等:达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。即v正=v逆≠0。 ④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。 ⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。
(2)判断化学平衡状态的标志: ① VA(正方向)=VA(逆方向)或nA(消耗)=nA(生成)(不同方向同一物质比较) ②各组分浓度保持不变或百分含量不变 ③借助颜色不变判断(有一种物质是有颜色的) ④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应xA+yBzC,x+y≠z)