导图社区 计算机算法
这是一篇关于计算机算法的思维导图,主要内容包括:算法竞赛,算法优化,算法测试与分析,算法应用,算法类型,算法设计技巧,算法复杂度,算法基础。算法是计算机程序中的一组指令集合,用于解决特定的问题或完成特定的任务。
这是一篇关于量子模拟算法的思维导图,主要内容包括:未来展望,伦理与法规,教育与培训,发展趋势,算法挑战,应用领域,算法类型,基本原理,定义与目的。量子模拟算法(Quantum Simulation Algorithm,简称QSA)是一种用于量子多体系统的量子计算仿真算法。该算法的核心在于利用量子计算机的强大计算能力来模拟复杂的量子系统,从而解决经典计算机难以处理的问题。
这是一篇关于量子优化算法的思维导图,主要内容包括:量子算法的教育与研究,量子算法的实现平台,量子算法的挑战与前景,量子变分算法(VQE),量子近似优化算法(QAOA),量子退火,量子优化算法概述,量子计算基础。
社区模板帮助中心,点此进入>>
互联网9大思维
组织架构-单商户商城webAPP 思维导图。
域控上线
python思维导图
css
CSS
计算机操作系统思维导图
计算机组成原理
IMX6UL(A7)
考试学情分析系统
计算机算法
算法基础
定义
算法是解决特定问题的一系列定义良好的指令集合
算法是计算机程序的核心,指导计算机如何执行任务
特性
输入:算法有零个或多个输入
输出:算法至少有一个或多个输出
确定性:算法的每条指令都清晰无歧义
有限性:算法必须在有限步骤后终止
可行性:算法的每一步都必须足够基本,能够被精确执行
算法复杂度
时间复杂度
定义:算法执行时间与输入数据量的关系
表示法:大O表示法(Onotation)
常见时间复杂度
O(1):常数时间复杂度
O(log n):对数时间复杂度
O(n):线性时间复杂度
O(n log n):线性对数时间复杂度
O(n^2):平方时间复杂度
O(2^n):指数时间复杂度
空间复杂度
定义:算法执行过程中占用存储空间与输入数据量的关系
重要性:空间复杂度影响算法的内存使用效率
算法设计技巧
分治法
定义:将问题分解为小问题,递归解决,最后合并结果
应用实例:归并排序、快速排序
动态规划
定义:将复杂问题分解为简单子问题,存储子问题解以避免重复计算
应用实例:背包问题、最长公共子序列
贪心算法
定义:在每一步选择中都采取在当前状态下最好或最优的选择
应用实例:霍夫曼编码、图的最小生成树
回溯算法
定义:通过选择不同的可能性来探索问题空间,并在发现当前选择不可能达到解时回退
应用实例:八皇后问题、图的着色问题
分支限界法
定义:类似于回溯法,但使用广度优先或最小耗费优先的策略
应用实例:旅行商问题、装载问题
算法类型
排序算法
冒泡排序
比较相邻元素,若顺序错误则交换
时间复杂度:O(n^2)
选择排序
每次从未排序部分选出最小(或最大)元素,放到已排序序列的末尾
插入排序
将未排序序列的第一个元素插入到已排序序列的适当位置
快速排序
通过一个轴点将数组分为两部分,一部分小于轴点,另一部分大于轴点
时间复杂度:O(n log n)
归并排序
将数组分成两半,递归排序,然后合并结果
堆排序
利用堆这种数据结构所设计的一种排序算法
搜索算法
线性搜索
从头到尾遍历数组,直到找到目标值
时间复杂度:O(n)
二分搜索
在有序数组中,通过比较中间元素与目标值,缩小搜索范围
时间复杂度:O(log n)
深度优先搜索(DFS)
从一个顶点开始,尽可能深地搜索图的分支
时间复杂度:O(V+E)
广度优先搜索(BFS)
从一个顶点开始,逐层向外扩展搜索图的邻接点
图算法
最短路径
Dijkstra算法
单源最短路径算法,适用于带权重的图
时间复杂度:O(V^2) 或 O(E + V log V)
BellmanFord算法
可以处理带有负权重边的图
时间复杂度:O(VE)
最小生成树
Prim算法
从一个顶点开始,逐步增加边和顶点,直到覆盖所有顶点
时间复杂度:O(V^2)
Kruskal算法
按边的权重顺序选择边,避免形成环
时间复杂度:O(E log E)
数学算法
欧几里得算法
计算两个正整数a和b的最大公约数
时间复杂度:O(log min(a, b))
快速幂算法
计算a的b次幂对c取模的结果
时间复杂度:O(log b)
素数检测
MillerRabin素数检测
判断一个数是否为素数的概率算法
时间复杂度:O(k log^3 n)
算法应用
数据压缩
Huffman编码
根据字符出现频率构建最优二叉树进行编码
LZW编码
无损数据压缩算法,广泛用于文件压缩
加密算法
对称加密
DES、AES
使用相同的密钥进行加密和解密
非对称加密
RSA、ECC
使用一对密钥,公钥加密,私钥解密
数据库查询优化
索引
提高数据检索速度
查询计划
优化数据库查询执行路径
机器学习
算法选择
决策树、支持向量机、神经网络
时间复杂度:取决于模型和数据集大小
特征选择
选择对预测模型最有影响的特征
算法测试与分析
单元测试
测试算法的各个独立模块
性能分析
测试算法的时间和空间效率
正确性证明
通过数学方法证明算法的正确性
复杂度分析
评估算法的效率和资源消耗
算法优化
代码优化
提高代码执行效率
算法改进
通过改进算法结构提高效率
硬件加速
利用GPU或其他硬件资源加速算法执行
并行计算
将算法分解为多个子任务,同时执行
算法竞赛
ACMICPC
国际大学生程序设计竞赛
Codeforces
在线编程竞赛平台
LeetCode
编程面试准备平台
TopCoder
网络编程竞赛社区