导图社区 数学课程标准(2011版)
义务教育数学课程标准(2011年版)各部分要点梳理,有利于系统地理解课程标准核心理念和具体内容,从而促进对新课标的掌握和数学教学
编辑于2021-07-08 14:36:34数学课程标准(2011版)
前言
什么是数学? 数量关系、空间形式
课程性质:培养公民素质的基本课程。基础性、普及性、发展性
课程基本理念
1.数学教育:要面向全体学生,适应学生个性发展需要。人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容:
课程内容要反映社会需要、数学特点,要符合学生认知规律。
数学结果+形成过程+数学思想方法
选择:要贴近学生实际,有利于学生体验理解、思考探索
组织:要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。
呈现:注意层次性和多样性。
3.教学活动
师生角色:教学活动是师生积极参与、交往互动、共同发展过程;学生学与教师教的统一;学生是学习的主题,教师是学习的组织者、引导者、合作者。
数学课堂教学:应激发学生兴趣,调动学生积极性,引发学生数学思考,鼓励学生创造性思维。要注重培养学生良好数学学习习惯,掌握数学学习方法。
学生学习:应是生动活泼的、主动的、富有个性的过程 学习数学的重要方式:认真听讲、积极思考、动手实践、自主探索、合作交流 学生应有足够时间空间经历观察、实验、猜测、计算、推理、验证等过程
教师教学:应以学生认知发展水平和已有经验为基础,面向全体学生,注重启发式和因材施教。 教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探究、合作交流,使学生理解掌握数学知识技能,体会运用数学思想方法,获得基本活动经验。
4.学习评价:目的是全面了解学生学习数学的过程结果,激励学生学习和改进教师教学; 应建立目标多元、方法多样的评价体系; 评价既要关注学习结果,也要重视过程。既要关注学习水平,也要重视情感态度,帮助学生认识自我,建立信心。
5.信息技术:数学课程设计与实施应合理运用现代信息技术,要注意信息技术与课程内容整合,注重实效。 要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
课程设计思路
义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发学生的数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象数学问题、构建数学模型、寻求结果、解决问题的过程。
学段划分:第一学段(1-3年级)、第二学段(4-6年级)、第三学段(7-9年级)
课程目标:分总目标和学段目标,从知识技能、数学思考、问题解决、情感态度四个方面加以阐述。 数学课程目标包括结果目标(行为动词:了解、理解、掌握、运用)和过程目标(行为动词:经历、体验、探索)。
课程内容:数与代数、图形与几何、统计与概率、综合与实践。 综合与实践内容设置的目的在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生 解决现实问题的能力。
十个核心关键词
数感:指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系;
符号意识:指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式;
空间观念:指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等;
几何直观:指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
数据分析观念: 包括:了解在现实生活中有许多问题应当先做调查研究,手机数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。
运算能力:指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
推理能力:推理能力的发展应贯穿于整个数学学习过程中。 推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理链,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
模型思想:模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。 建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
应用意识:有两方面的含义,一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。 在真个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
创新意识: 创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。 学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
课程目标
总目标
1.获得适应社会生活和进一步发展所必需的数学基础知识、基本技能、基本思想、基本活动经验。 (四基)
2.体会数学知识之间、数学与其它学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的额能力、分析和解决问题的能力。
3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。
总目标从四个方面具体阐述: 知识技能、数学思考、问题解决、情感态度。 总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾四个方面的目标。 四个方面目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面的、持续、和谐发展有着重要的意义。 数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其它三个目标的实现。
学段目标
第一学段(1-3年级):知识技能、数学思考、问题解决、情感态度
第二学段(4-6年级):知识技能、数学思考、问题解决、情感态度
第三学段(7-9年级):知识技能、数学思考、问题解决、情感态度
课程内容
第一学段(1-3年级)
数与代数:数的认识、数的运算、常见的量、探索规律
图形与几何:图形的认识、测量、图形的运动、图形与位置
统计与概率:
综合与实践:
第二学段(4-6年级)
数与代数:数的认识、数的运算、式与方程、正比例反比例、探索规律
图形与几何:图形的认识、测量、图形的运动、图形与位置
统计与概率:简单数据统计过程、随机现象发生的可能性
综合与实践:
第三学段(4-6年级) P26
数与代数:数与式(有理数、实数、代数式整式与分式)、方程与不等式(方程与方程组、不等式与不等式组)、函数(函数、一次函数、反比例函数、二次函数)
图形与几何:图形的性质(点线面角、相交线与平行线、三角形、四边形、圆、尺规作图、定义命题定理)、图形的变化(图形的轴对称、图形的旋转、图形的平移、图形的相似图形的投影)、图形与坐标(坐标与图形位置、坐标与图形运动)
统计与概率:抽样与数据分析、事件的概率
综合与实践:
实施建议
教学建议
教学活动是师生积极参与、交往互动、共同发展的过程。 数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。 在数学教学活动中,教师要把基本理念转化为自己的教学行为,处理好教师讲授与学生自主学习的关系,注重启发学生积极思考; 发扬教学民主,当好学生数学活动的组织者、引导者、合作者; 激发学生的学习潜能,鼓励学生大胆创新与实践; 创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材; 关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展; 合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。
1.数学教学活动要注重课程目标的整体实现
数学教学不仅要使学生获得数学的知识技能,而且要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现。
课程目标的整体实现需要日积月累。 努力挖掘教学内容中可能蕴涵的、与四个方面目标有关的教育价值 ; 不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。
2.重视学生在学习活动中的主体地位。(有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展)
A.学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。(学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得到发展)
B.教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。 教师的“组织”作用主要体现在:1.教师应当准确把握教学内容和数学实质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案; 2.在教学活动中,教师要选择适当的教学方式,因势利导、适时调控,努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动。 教师的“引导“作用主要体现在:1.通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心; 2.通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想; 3.能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。 教师与学生的“合作“主要体现在: 教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。
C.处理好学生主体地位和教师主导作用的关系。好的教学活动,应是学生主体地位和教师主导作用的和谐统一。 一方面:学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面:有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。 实施启发式教学有助于落实学生的主体地位和发挥教师的主导作用。 教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。
3.注重学生对基础知识、基本技能的理解和掌握(“知识技能”既是学生发展的基础性目标,又是落实“数学思考”“问题解决”“情感态度”目标的载体。)
A.数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。 学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。 为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。 教师应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系。 数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。
B.在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。
4.感悟数学思想,积累数学活动经验
数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括。 学生在积极参与教学活动的过程中,通过独立思考、合作交流、逐步感悟数学思想。
数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。 数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。
教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。
“综合与实践“是积累数学活动经验的重要载体。
5.关注学生情感态度的发展
要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数学教学过程中 P47
应当经常考虑的情感态度问题点:学生积极参与教学过程、学生探索、学生创新、感受数学价值、数学学习兴趣、体验成功喜悦增强自信心、善于与同伴合作交流、理解尊重他人意见、独立思考大胆质疑、做自己能做的事并对自己做的事负责、锻炼克服困难的意志、培养学生良好的学习习惯。P47
6.合理把握“综合与实践”的实施P48
“综合与实践”是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动
“综合与实践”的教学,重在实践,重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其它学科、数学内部知识的联系和综合应用。P48
教师在教学设计和实施时应特别关注的几个环节:问题的选择,问题的展开过程,学生参与的方式,学生的合作交流,活动过程和结果的展示与评价。
要使学生能充分、自主地参与“综合与实践”活动,选择恰当的问题是关键。这些问题可来自教材、可教师学生开发,提倡教师研制开发生产好的问题
实施“综合与实践”时,教师要放手让学生参与,启发和引导学生进入角色,组织好学生之间的合作交流,并照顾到所有学生。 教师不仅要关注结果,更要关注过程,不要急于求成,要鼓励引导学生充分利用“综合与实践”的过程,积累活动经验、展现思考过程、交流收获体会、激发创造潜能。
实施过程中,教师要注意观察、积累、分析、反思,使“综合与实践”的实施成为提高教师自身和学生素质的互动过程。
教师应根据不同学段学生的年龄特征和认知水平,根据学段目标,合理设计并组织实施“综合与实践”活动。
7.教学中应当注意的几个关系
A.面向全体学生与关注学生个体差异的关系。P49 教学活动应努力使全体学生达到课程目标的基本要求,同时要关注学生的个体差异,促进每个学生在原有基础上的发展。 对于学习有困难的学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试用自己的方式解决问题、发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困难或错误的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。 对于学有余力并对数学有兴趣的学生,教师要为他们提供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。 在教学活动中,要鼓励与提倡解决问题策略的多样化,恰当评价学生在解决问题过程中所表现出的不同水平;问题情境的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能主动参与,提出各自解决问题的策略,并引导学生通过与他人的交流选择合适的策略,丰富数学活动的经验,提高思维水平。
B.“预设“与”生成“的关系P50 理解和钻研教材,应以本标准为依据,把握好教材的编写意图和教学内容的教育价值; 对教材的再创造,集中表现在:能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和课程内容规定的要求。 实施教学方案,是把“预设”转化为实际的教学活动。在这个过程中,师生双方的互动往往会“生成”一些新的教学资源,这就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更好的效果。
C.合情推理与演绎推理的关系 推理贯穿于数学教学的始终,义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。 教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理的能力。 通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求。
D.使用现代信息技术与教学手段多样化的关系。 现代信息技术的作用不能完全替代原有的的教学手段,其真正价值在于实现原有的教学手段难以达到甚至达不到的效果。 在应用现代信息技术的同时,教师还应注重课堂教学的板书设计。必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。
评价建议
评价的主要目的是全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。 评价不仅要关注学生的学习结果,更要关注学生在学习过程中的发展和变化。
1.基础知识和基本技能的评价:定性与定量相结合,以定性评价为主。
2.数学思考和问题解决的评价:对数学思考和问题解决的评价应当采用多种形式和方法,特别要重视在平时教学和具体的问题情境中进行评价。 学生解决问题的策略可能与教师的预设有所不同,教师应当给予恰当的评价。
3.情感态度的评价:主要方式有课堂观察、活动记录、课后访谈等。
4.注重对学生数学学习过程的评价:
5.体现评价主体多元化和评价方式多样化: 多元化指教师、家长、同学及学生本人都可以作为评价者,可以综合运用教师评价、学生自我评价、学生相互评价、家长评价等方式。 多样化体现在多种评价方法的运用看,包括书面测验、口头测验、开放式问题、活动报告、课堂观察、课后访谈、课内外作业、成长记录袋。
6.恰当地呈现和利用评价结果 评价结果呈现应采用定性与定量相结合的方式。第一学段的评价应当以描述性评价为主,第二学段采用描述性评价和等级评价相结合的方式,第三学段可以采用描述性评价和等级(或百分制)评价相结合的方式。
7.合理设计与实施书面测验 对于学生基础知识和基本技能达成情况的评价,必须准确把握课程内容中的要求。 对基础知识和基本技能的考查,要注重考查学生对其中所蕴涵的数学本质的理解,考查学生能否在具体情境中合理应用。应淡化特殊的结题技巧,不出偏题怪题。 在设计试题时,应该挂住并且挺闲课程标准的设计思路中提出的十个核心词。 根据评价的目的合理地设计试题的类型,有效地发挥各种类型题目的功能。 在书面测验中,积极探索可以考查学生学习过程的试题,了解学生的学习过程。
教材编写建议
1.教材编写应体现科学性。A.全面体现课程标准中提出的理念和目标。B.体现课程内容的教学实质。C.准确把握课程内容要求。D.教材的编写要有一定的实验依据。
2.教材编写应体现整体性。A.整体体现课程内容的核心。B.整体考虑知识之间的关联。C.重要的数学概念与数学思想要体现螺旋上升的原则。 D.整体性体现还应注意以下几点。
3.教材内容的呈现应体现过程性A.体现数学知识的形成过程。B.反映数学知识的应用过程。
4.呈现内容的素材应贴近学生现实。A.生活现实;B.数学现实;C.其它学科现实
5.教材内容设计要有一定的弹性
6.教材编写要体现可读性
课程资源开发与利用建议