导图社区 宇宙天体分类
这是一篇关于宇宙天体分类的思维导图,天体(Astronomical object),又称为星体,指太空中的物体,更广泛的解释就是宇宙中的所有个体。天体的集聚,从而形成了各种天文状态的研究对象。天体,是对宇宙空间物质的真实存在而言的,也是各种星体和星际物质的通称。人类发射并在太空中运行的人造卫星、宇宙飞船、空间实验室、月球探测器、行星探测器等则被称为人造天体。
编辑于2022-09-03 12:05:05 浙江省宇宙天体分类
恒星
孤星型恒星
孤星型恒星在宇宙空间孤立存在,不在星系中,没有与其它星球形成关系。该类型恒星在宇宙中一般呈直线运动。其形态为球形和非球形。
主星型恒星
这类恒星捕获小质量天体形成绕其旋转的星系,恒星位于中心是主星,其它小质量天体如行星彗星等绕其旋转是从星。在宇宙中一般呈直线运动。形态为球形和非球形。
从属型恒星
这类恒星绕大质量天体进行转动,没有小质量天体绕其旋转。该类型恒星存在公转和自转,其运动轨道为圆形、近圆形和椭圆形,其形态为球形或近球形
伴星型恒星
这类恒星与大质量体星球形成相互绕转,形成伴星关系。伴星间围绕共同质点公转,存在自转和公转,其形态为球形或近球形。
混合型恒星
这类恒星绕大质量天体进行转动,同时有小质量天体绕其旋转或有伴星。存在公转和自转,其形态为球形或近球形。如太阳。
行星
气态行星
它们拥有浓密的大气层,在大气之下却并没有坚实的表面,而是一片沸腾着的氢组成的“汪洋大海”。所以它们实质上是液态行星。
类地行星
顾名思义,类地行星的许多特性与地球相接近,它们离太阳相对较近,质量和半径都较小,平均密度则较大
类地行星的表面都有一层硅酸盐类岩石组成的坚硬壳层,有着类似地球和月球的各种地貌特征。对于没有大气的星球(如水星),其外貌类似于月球,密布着环形山和沟纹;而对于像有浓密大气的金星,则其表面地形更像地球
远日行星
远日行星是在望远镜发明以后才被发现的。它们拥有主要由分子氢组成的大气,通常有一层非常厚的甲烷冰、氨冰之类的冰物质覆盖在其表面上,再以下就是坚硬的岩核
可见行星
行星是自身不发光的,环绕着恒星的天体。一般来说来行星需要具有一定的质量,行星的质量要足够的大,以至于它的形状大约是圆球状,质量不够的被称为小行星。“行星”这个名字来自于它们的位置在天空中不固定,就好像它们在行走一般。
白矮星
白矮星(White Dwarf,也称为简并矮星)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。白矮星是演化到末期的恒星,主要由碳构成,外部覆盖一层氢气与氦气。白矮星在亿万年的时间里逐渐冷却、变暗,它体积小,亮度低,但密度高,质量大。
棕矮星
由于没有核聚变,棕矮星的表面温度不会超过3000K。棕矮星的温度越低,它的可见光波段的亮度就越小。M型矮星的辐射主要集中在红光波段(大约0.75μm),而温度更低的L型棕矮星(温度为1200-2000K)和T型棕矮星(温度为800-1200K)的辐射则主要集中在近红外波段(1-2μm),这使得棕矮星从本质上就会变得很暗弱。另外,棕矮星外层大气中的分子,例如水、一氧化碳、甲烷和氨,会吸收向外的辐射,使得棕矮星进一步变暗
棕矮星(brown dwarf)是构成类似恒星,但质量没达到0.08倍太阳质量,不足以在核心点燃聚变反应的气态天体。其质量在恒星与行星之间。棕矮星是质量介于最小恒星与最大行星之间的天体,由于这一原因棕矮星非常黯淡,要发现它们十分复杂,因此要确定它们的大小就更加复杂。
褐矮星
尽管褐矮星的光谱存在着复杂性,但是化学组成仍然是可以被识别出来的,而且也可以用来对褐矮星进行分类。如今还没有直接观测到比T8型褐矮星质量更小,温度比T8型褐矮星(有效温度大约为800K)更低的天体,来衔接褐矮星和木星(大约125K)
黑洞
黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹,还可以取得位置以及质量。
黑洞是现代广义相对论中,存在于宇宙空间中的一种天体。黑洞的引力极其强大,使得视界内的逃逸速度大于光速。故而,“黑洞是时空曲率大到光都无法从其事件视界逃脱的天体
超新星
超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可能持续几周至几个月才会逐渐衰减。而在此期间,一颗超新星所释放的辐射能量可以与太阳在其一生中辐射能量的总和相当[1]。恒星通过爆炸可以将其大部分甚至几乎所有物质以高至十分之一光速的速度向外抛散[2],并向周围的星际物质辐射激波[3]。这种激波会导致一个由膨胀的气体和尘埃构成的壳状结构形成,这被称作超新星遗迹。超新星是星系引力波潜在的强大来源[4]。初级宇宙射线中来自超新星的占了很大的比例
超巨星
超巨星(supergiant):恒星名,位于赫罗图的最顶端,它们是光度最强的恒星之一。它们的绝对星等亮于-2等。肉眼所见的最亮的蓝(热)超巨星是参宿七和天津四,最亮的红(冷)超巨星是参宿四和心宿二。
超巨星是质量最大的恒星,在赫罗图上占据着图的顶端,在约克光谱分类中属于Ia(非常亮的超巨星)或Ib(不很亮的超巨星),但最明亮的超巨星有时会被分类为0。超巨星的质量是太阳的5至150倍,亮度则为太阳光度的2,000至数百万倍,它们的半径变化也很大,通常是太阳半径的20至500倍,甚至超过1000倍太阳半径。斯特凡-波兹曼定律显示红超巨星的表面,单位面积辐射的能量较低,因此相对于蓝超巨星的温度是较冷的,因此有相同亮度的红超巨星会比蓝超巨星更巨大。因为她们的质量是如此的巨大,因此寿命只有短暂的一千万至五千万年,所以只存在于年轻的宇宙结构中,像是疏散星团、螺旋星系的漩涡臂,和不规则星系。她们在螺旋星系的核球中很罕见,也未曾在椭圆星系或球状星团中被观测到,因为这些天体都是由老年的恒星组成的
造父变星
造父变星(Cepheid variable stars)是变星的一种,它的光变周期(即亮度变化一周的时间)与它的光度成正比,因此J可用于测量星际和星系际的距离。大多数这类变星在光度极大时为F型星(中等温度的热星);在光度极小时为G型星(像太阳那样比较冷的星)。典型星是仙王座δ。
中子星
中子星(neutron star)是除黑洞外密度最大的星体,恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一,质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体,其密度比地球上任何物质密度大相当多倍
中子星的密度为每立方厘米8^14~10^15克,相当于每立方厘米重1亿吨以上[1]。此密度也就是原子核的密度,是水的密度的一百万亿倍。对比起白矮星的几十吨/立方厘米,后者似乎又不值一提了。如果把地球压缩成这样,地球的直径将只有22米!事实上,中子星的密度是如此之大,半径十公里的中子星的质量就与太阳的质量相当了。
白洞
白洞是一个强引力源,其外部引力性质均与黑洞相同,白洞可以把它周围的物质吸积到边界上形成物质层。白洞理论主要可用来解释一些高能天体现象
由于白洞周围具有很强的引力场,它把附近的尘埃、气体和辐射吸引到边界上来,产生很高的加速度,从而与从白洞内高速向外喷射的物质微粒相碰撞,产生巨大的能量辐射。X射线、宇宙射线、射电爆发及双射电源等高能现象,都可看成是白洞与其周围吸积物质相互作用的结果。用白洞模型解释宇宙背景X射线和γ射线的来源,也得到了与观测结果相近的能谱。
脉冲星
脉冲星,就是旋转的中子星,因不断地发出电磁脉冲信号而得名。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。
红矮星
红矮星(red dwarf)是指表面温度低、颜色偏红的矮星,尤指主序星中比较“冷”的M型及K型恒星,这些恒星质量不超过太阳质量的一半,105个木星质量以上,表面温度为2,500至5,000K。除太阳外最接近地球的恒星比邻星(Proxima Centauri)便是一颗红矮星
所谓红矮星,也就是M型主序星(MV),根据赫罗图,“红矮星”在众多处于主序阶段的恒星当中,其大小及温度均相对较小和低,在光谱分类方面属于M型。它们在恒星中的数量较多,大多数红矮星的直径及质量均低于太阳的三分一,表面温度也低于3,500K。释出的光也比太阳弱得多,有时更可低于太阳光度的万分之一。又由于内部的氢元素核聚变的速度缓慢,因此它们也拥有较长的寿命。红矮星的内部引力根本不足把氦元素聚合,红矮星不会膨胀成红巨星,而逐步收缩,直至氢气耗尽。
星系
星系主要分成三类:椭圆星系、螺旋星系和不规则星系。对星系类型更明确与广泛的描述会在哈柏序列的条目中叙述。因为哈柏序列是根据视觉的型态,他也许会错过某些星系的重要特征,例如恒星形成率(在星爆星系或活跃星系的核心)。 根据哈柏分类法,星系的类型E表示椭圆星系,S是螺旋星系,SB是棒旋星系。
《论地球起源与演化》对星系的定义是:在宇宙中,由两颗或两颗以上星球所形成的绕转运动组合体叫做。星系的英语词galaxy源自于希腊语的γαλαξίας (galaxias)。广义上星系指无数的恒星系(当然包括恒星的自体)、尘埃(如星云)组成的运行系统。指参考我们的银河系,是一个包含恒星、星团、星云、气体的星际物质、宇宙尘和暗物质,并且受到重力束缚的大质量系统,通常距离都在几百万光年以上。星系平均有数百亿颗恒星,是构成宇宙的基本单位。典型的星系,从只有数千万(107)颗恒星的矮星系到上兆(1012)颗恒星的椭圆星系都有,全都环绕着质量中心运转。除了单独的恒星和稀薄的星际物质之外,大部分的星系都有数量庞大的多星系统、星团以及各种不同的星云。
星云
星云(Nebula),是稀薄的气体或尘埃构成的天体之一。包含了除行星和彗星外的几乎所有延展型天体。它们的主要成份是氢,其次是氦,还含有一定比例的金属元素和非金属元素。1990年哈勃望远镜升空以来的研究还发现含有有机分子等物质
星云(源自拉丁文的:nebulae或nebulæ,与ligature或nebulas,意思就是云pl.)是尘埃、氢气、氦气和其他电离气体聚集的星际云。原本是天文学上通用的名词,泛指任何天文上的扩散天体
流星
流星是指运行在星际空间的流星体(通常包括宇宙尘粒和固体块等空间物质)在接近地球时由于受到地球引力的摄动而被地球吸引,从而进入地球大气层,并与大气摩擦燃烧所产生的光迹。流星体原来是围绕太阳运动的,在经过地球附近时,受地球引力的作用,改变轨道,从而进入地球大气圈。流星有单个流星、火流星、流星雨几种。在掉到地面之前,大部分都已烧成了灰烬,少部分会变成陨石掉到地面上。大部分可见的流星体都和沙粒差不多,重量在1克以下。流星进入大气层的速度介于11km/s到72km/s之间。
彗星
彗星(Comet),是指进入太阳系内亮度和形状会随日距变化而变化的绕日运动的天体,呈云雾状的独特外貌。彗星分为彗核、彗发、彗尾三部分。彗核由冰物质构成,当彗星接近恒星时,彗星物质升华,在冰核周围形成朦胧的彗发和一条稀薄物质流构成的彗尾。由于太阳风的压力,彗尾总是指向背离太阳的方向形成一条很长的彗尾。彗尾一般长几千万千米,最长可达几亿千米。彗星的形状像扫帚,所以俗称扫帚星。彗星的运行轨道多为抛物线或双曲线,少数为椭圆。目前人们已发现绕太阳运行的彗星有 1700 多颗。著名的哈雷彗星绕太阳一周的时间为 76 年
夸克星
夸克星是一种假设的星体,被认为是由强烈的相互作用形成的。根据理论,恒星死亡时会在自身重力的影响下发生坍缩,若其质量为中等,即约比太阳的质量多1.44倍,重力就足够将恒星物质中的电子和质子挤压到一起形成中子星;若该恒星质量更大,中子可能破碎成自身的组成成分,即夸克。在一定的压力下半数由中子分离而成的夸克能够转化为奇夸克,产生一种更加致密的物质类型。这时的星体就是由奇夸克紧密结合在一起所构成的“夸克星”。
夸克星是由奇夸克物质组成,是一种假设的星体。理论上,奇夸克物质(简称奇物质)是在特别重的中子星里形成的密度极端高的一种物质状态。根据此理论,当构成中子星的中子因为受到本身重力塌陷的高度压缩,个别的中子会因此崩坏,组成中子的夸克会分离开来,进一步转化成奇夸克,也就是“奇物质”。这时的星体就是直接由奇夸克紧密结合在一起所构成的“夸克星”或是“奇物质星”(简称“奇星”),整个星体几乎就是单一的一颗巨大的中子(对比来说,白矮星只是密集的原子核,而中子星就可以看作是一个巨大的原子核(中子团),夸克星就是一个巨大的中子,黑洞就是一个理论上的奇点,体积为0)。以重量和密度来分类,夸克星是介于黑洞和中子星之间,如果再有足够的物质加入夸克星里,它之后会再继续收缩塌陷而成为黑洞。
卫星
卫星是环绕一颗行星按闭合轨道做周期性运行的天体。不过,如果两个天体质量相当,它们所形成的系统一般称为双行星系统,而不是一颗行星和一颗天然卫星。通常,两个天体的质量中心都处于行星之内。因此,有天文学家认为冥王星与冥卫一应该归类为双行星,但2005年发现两颗新的冥卫,又使问题复杂起来。