导图社区 化学九年级上
平均值法 混合物中确定各组分的有关计算是初中化学计算中难度较大的一种题型.如混合物中各组分均能与某一物质反应且得到的产物中有同一种物质或混合物中各组成成分均含有同一种元素,要确定其成分的有天计算可用平均值法求解。解答此类题的关键是要先找出混合物中各成分的平均值(如平均二价相对原子质节、平均相对分子质量、平均质量、平均质量分数等),此平均值总是介于组分中对应值的最大值与最小值之间。利用这些平均值解题的方法叫做平均值法。
编辑于2022-11-17 22:14:34 安徽阁下是否知晓,楼下的玫瑰花从中,又多了一只流浪猫?改掉了句句对仗的习惯,句句也鸭运,属于我的即兴诗,对我自己是一个小突破。
平均值法 混合物中确定各组分的有关计算是初中化学计算中难度较大的一种题型.如混合物中各组分均能与某一物质反应且得到的产物中有同一种物质或混合物中各组成成分均含有同一种元素,要确定其成分的有天计算可用平均值法求解。解答此类题的关键是要先找出混合物中各成分的平均值(如平均二价相对原子质节、平均相对分子质量、平均质量、平均质量分数等),此平均值总是介于组分中对应值的最大值与最小值之间。利用这些平均值解题的方法叫做平均值法。
自我总结的议论文论证方法。😄
社区模板帮助中心,点此进入>>
阁下是否知晓,楼下的玫瑰花从中,又多了一只流浪猫?改掉了句句对仗的习惯,句句也鸭运,属于我的即兴诗,对我自己是一个小突破。
平均值法 混合物中确定各组分的有关计算是初中化学计算中难度较大的一种题型.如混合物中各组分均能与某一物质反应且得到的产物中有同一种物质或混合物中各组成成分均含有同一种元素,要确定其成分的有天计算可用平均值法求解。解答此类题的关键是要先找出混合物中各成分的平均值(如平均二价相对原子质节、平均相对分子质量、平均质量、平均质量分数等),此平均值总是介于组分中对应值的最大值与最小值之间。利用这些平均值解题的方法叫做平均值法。
自我总结的议论文论证方法。😄
化学九年级知识点图解
物质组成
物质分类
单质和化合物
共价化合物与离子化合物的区别: 1. 共价化合物 (1)概念:像HCl、CO2这样以共用电子对结合在一起的化合物为共价化合物。 (2)共价化合物的类型: ①两种非金属原子结合成的化合物,如HCl、CO2等。 ②非金属与酸根构成的化合物,如H2SO4、HNO3等。 2. 离子化合物与共价化合物的区别: 离子化合物是由阴、阳离子相互作用形成的化合物;共价化合物是原子间全部以共用电子对结合形成的化合物。离子化合物由离子构成,共价化合物大多数由分子构成。
对单质和化合物概念的理解: (1)单质的概念: ①理解一单质的概念不仅要关注它是由一种元素组成,还应注意它首先是一种纯净物。如:氧气、氮气、碳、硫、铁、铜、各种稀有气体等都属于单质。 ②由同种元素组成的物质不一定是单质,还可能是混合物:如:氧气与臭氧的混合物、白磷与红磷的混合物、金刚石与石墨的混合物等都只含一种元素,但都属于混合物。 (2)化合物的概念:理解化合物的概念同样不仅要关注它是由两种或两种以上的元素组成,还应注意它首先是一种纯净物。如二氧化碳,氯化钠、高锰酸钾等都属于化合物。
同种元素组成的物质一定是单质吗? 由同种元素组成的纯净物叫做单质。理解单质的概念必须抓住两点:①由同种元素组成;②必须是纯净物,如氧气是一单质。由同种元素组成的物质不一定是单质,也可能是混合物,但绝不可能是化合物,如氧气 (O2)、臭氧(O3)两种物质混在一起是一种混合物,但是只有一种氧元素;同样的例子还有红磷和白磷,金刚石和石墨等。
单质: (1)概念:由同种元素组成的纯净物。 (2)单质的分类:依据组成单质元素的性质把一单质分为三类。 金属单质:由金属元素组成的单质,如铁、铜、银等 非金属单质:由非金属元素组成的单质,如碳、磷、氧气等 稀有气体单质:由稀有气体元素组成的单质,如氦、氖、氛等单质
化合物: (1)概念:由不同种元素组成的纯净物。 (2)化合物的分类:化合物分为有机化合物和无机化合物。
化合物与氧化物的区别和联系:
单质和化合物的区别和联系:
纯净物和混合物
常考的纯净物与混合物: (1)混合物:石油、煤、天然气、洁净的空气、生理盐水、矿泉水、汽水、碘酒、白酒、双氧水、盐酸、合金等都是混合物。 (2)纯净物:水银、烧碱、纯碱、胆矾、液态氧、液态氮、蒸馏水(纯水)、干冰、冰水共存物、金刚石、石墨、生石灰、熟石灰、氯化钠、氧化铁等都是纯净物:
混合物: (1)概念:由两种或多种物质混合而成的物质,没有有固定的组成,各成分保持自己原有的化学性质。 (3)常见的混合物:空气、合金、矿石、溶液等。 (4)混合物的提纯:混合物经过物理或化学的方法可以提纯。 纯净物: (1)概念:只由一种物质组成的物质。 (3)纯净物的分类:纯净物根据物质组成的元素种类,分为两大类:单质和化合物。
对纯净物和混合物概念的理解: (1)混合物概念:混合物可以看作是由几种纯净物混合而成的,混合物的形成过程中发生的是物理变化。由于混合物的组成一般不固定,所以往往不能用化学式表示。 (2)纯净物概念:纯净物只由一种物质组成,有固定的组成.可以用化学式表示。
纯净物和混合物的区别:
物质的分类示意图:
金属单质和非金属单质
二、非金属单质的化学性质
1、化学惰性:稀有气体; 强氧化性:F2、Cl2、Br2、O2; 以还原性为主:H2、C、Si、B、P、As。 2、典型的非金属较易跟金属化合,一般形成离子键,非金属元素得电子,呈负价。 3、典型的非金属能跟氢气以极性共价键化合生成气态氢化物(ⅣA—ⅦA),共用电子对偏向非金属元素,非金属元素显负价。 4、不同非金属间通过极性键形成化合物,共用电子对偏向吸电子能力强的非金属。 5、非金属氧化物一般为酸性氧化物,其对应的水化物是酸,最高价氧化物对应的水化物酸性越强,则其元素的非金属性也越强。 具体化学性质是: (1)与金属反应 绝大多数非金属能与金属直接化合生成盐、氧化物、氮化物和碳化物。反应的难易是:强强易,弱弱难。典型的金属与典型的非金属化合形成离子化合物。 金属活动顺序表里的金属都能与F2、Cl2反应,除Ag、Pt、Au外都能与Br2、I2反应,除Pt、Au外都能与S反应,以上均生成无氧酸盐。 (2)与非金属反应 ①与H2反应生成气态氢化物(以极性键形成气态氢化物,水是液态)。反应的难易是:强易弱难,强稳定。 即使在温度 H2+Cl2→2HCl 非金属气态氢化物大多具有还原性,其规律是:强者弱。 ②与O2反应生成非金属氧化物,除NO、CO外,皆为成盐氧化物。反应规律是强难弱易,卤素不与氧气直接化合,具有强还原性的非金属与氧气反应容易。大多数非金属氧化物是酸性氧化物,其最高氧化物中除CO2为气体外,其余皆为固体。 S+O2=2SO24P+5O2=2P2O5 非金属单质形成氧化物的由易到难的程度:P、S、C、Si、N、I、Br、Cl。 40℃左右白磷燃烧,300℃左右煤(C)着火。C、Si可在空气中烧尽,N2在2000℃左右才和氧气化合。I2、Br2、Cl2不与氧气直接化合。 ③与其它非金属反应 (3)与水反应 (4)与碱溶液反应 (5)与氧化性酸反应 不太活泼的非金属C、S、P、I2等具有较强还原性,可被硝酸和浓硫酸等强氧化性酸氧化。 (6)与氧化物反应 ①与金属氧化物反应(具有还原性的非金属与具有氧化性的金属氧化物发生氧化还原反应。) ②与非金属氧化物反应 (7)与无氧化酸及无氧酸盐反应 按非金属的活动顺序发生置换反应(强代弱)。
非金属单质的性质:一、非金属单质的物理性质: 1、常温常压下非金属单质的状态 属于分子晶体的,在同类单质中分子量较小(范氏力较小)为气态(F2、Cl2、O2、N2、H2),较大的为液态(Br2),固态(S、P、I2)。 属于原子晶体的是固态(金刚石、硅、硼)。2、单质的熔、沸点 属于分子晶体的由于分子间力较小,故熔、沸点较低。具有相似结构的同类晶体中,一般是分子量越大,其熔、沸点较高。 属于原子晶体的由于共价键的键能大,牢固,所以熔点很高,如金刚石,硬度大。3、水溶性 氟能与水剧烈反应生成HF和O2;氯能溶于水(歧化反应),难溶于饱和食盐水;其它单质的水溶性都很小。 4、非金属单质呈固态时有热脆性,可能透明或半透明。 比重较小,无金属光泽((石墨例外)。导电、导热性差。
非金属单质1.概述 (1)位置及其原子结构 位置:位于元素周期表的右上角。把6种稀有气体除外,一般所指的非金属元素就只有16种。 原子结构:最外层电子数较多,原子半径较小,化学反应中容易结合电子,显示负化合价。(2)单质的晶体类型 分子晶体:H2、X2、O2、O3、S8、N2、P4、稀有气体。 原子晶体:金刚石、Si、B。 (3)单质的同素异形体 氧族、卤族及氮没有同素异形体。 由同种原子组成的晶体,晶格不同,形成不同的单质。如金刚石和石墨。由同种原子组成的分子,其原子个数不同,形成不同的单质。如O2、O3。 由同种原子组成的分子,其晶格不同,原子个数也不同而形成不同的单质。如白磷和红磷。
金属单质1. 金属元素的结构特点:最外层大多少于4个电子;一般较易失去电子,表现还原性 2. 金属在自然界中的存在形式 (1)游离态:化学性质不活泼的金属,在自然界中能以游离态的形式存在【举例】Au Ag Pt Cu (2)化合态:化学性质比较活泼的金属,在自然界中能以化合态的形式存在 【举例】Al Na【说明】少数金属在自然界中能以游离态的形式存在;而大多数的金属在自然界中能以化合态的形式存在.
金属单质性质:一、金属单质的物理性质 (1)大多呈银白色,有金属光泽金属单质(18张) 【特例】Cu为红色,Au为黄色 (2)常温大多固体 【特例】Hg(水银)是液体 (3)有导电性、导热性、延展性 二、金属的化学性质 (1)与非金属单质(O2、Cl2、S、I2等)的反应 (2)金属与H2O的反应 (3)与酸的反应:金属单质+酸→盐+氢气(置换反应) (4)金属与氧化物的反应(5)与盐的反应:金属单质+盐(溶液)→另一种金属+另一种盐
有机化合物和无机化合物
有机化合物: (1)概念: 通常人们将含有碳元素的化合物称为有机化合物,简称有机物,如甲烷、乙醇、葡萄糖、淀粉等。 (2)组成和结构:有机物都含碳元素,多数含有氢元素,可能还含有氧、氮、氯、硫、磷等元素。有机物中碳原子不仅可以和H,O,Cl,,N等原子直接结合,而且碳原子之间也可以互相连接成链状或环状。原子的排列方式不同,形成有机物的结构就不同,所表现出来的性质也不同。 (3)特点:大多数有机化合物都难溶于水,易溶于有机溶剂,大多数有机化合物受热易分解,且容易燃烧,燃烧产物有CO2和水;绝大多数有机化合物不易导电、熔点低。 (4)分类: ①有机物小分子:相对分了质量较小,如乙醇,甲烷、葡萄糖等。 ②有机高分子化合物:简称有机高分子,其相对分子质量比较大,从几万到几十万,甚至高达几百万或更高,如淀粉、蛋白质等。
无机化合物: (1)概念: 无机化合物简称无机物,通常指不含碳元素的化合物,但少数含碳元素的化合物,如CO,CO2, H2CO3,CaCO3等,不具有有机化合物的特点,归在无机化合物中。 (2)分类: 无机化合物根据元素组成及在水中离解成的粒子特点分为氧化物、酸、碱,盐。
氧化物,酸,碱,盐的比较:
有机化合物与无机化合物的主要区别:
概念的理解: 像NaCl、H2SO4和NaOH等不含碳元素的化合物称为无机化合物,而少数含碳元素的化合物,如CO,CO2和CaCO3等虽然含有碳元素,但具有无机化合物的特点,也把它们看作无机化合物。有机物一定含有碳元素,但含有碳元素的化合物不一定是有机物。含有碳元素但不属于有机物的化合物主要包括: 碳的氧化物、碳酸、碳酸盐和碳酸氢盐。
酸、碱、盐
酸: 1. 定义:电离时生成的阳离子全部是H+的化合物 2. 常见的酸:HCl,H2SO4,HNO3,H3PO4。
碱: 1. 定义:电离时生成的阴离子全部是OH-的化合物 2. 常见的碱:NaOH,KOH,Cu(OH)2,Fe(OH)3等
盐: 1. 定义:电离时生成金属离子(包括NH4+)和酸根离子的化合物 2. 常见的盐:NaCO3,NaCl,NaSO4等
酸、碱、盐的比较:
氧化物
分子和原子
分子的定义
概念的理解: ①分子是保持物质化学性质的“最小粒子”、不是“唯一粒子”。 ②“保持”的含义是指构成该物质的每一个分子与该物质的化学性质是一致的。 ③分子只能保持物质的化学物质,而物质的物理性质(如:颜色、状态等)需要大量的集合体一起来共同体现,单个分子无法体现物质的物理性质。 ④“最小”不是绝对意义上的最小,而是”保持物质化学性质的最小”。如果不是在“保持物质化学性质” 这层含义上,分子还可以分成更小的粒子。
由分子构成的物质: 物质是由粒子构成的,构成物质的粒子有多种,分子是其中的一种。世界上许多物质是由分子构成的,分子可以构成单质,也可以构成化合物。如:氧气、氢气、C60等单质是由分子构成的;水、二氧化碳等化合物也是由分子构成的。
用分子的观点解释问题: 物理变化和化学变化的区别由分子构成的物质,发生物理变化时分子本身未变,分子的运动状态、分子间的间隔发生了改变;发生化学变化时分子本身发生了变化,分子分成原子,原子重新组合变成了共他物质的分子。 如:水变成水蒸气,水分子本身没有变,只是分子间的问隔变大,这是物理变化;水通直流电.水分子发生了变化,生成了氢原子和氧原子,氢.原子构成氢分子,氧原子构成氧分子,这是化学变化。
分子的表示方法: 分子可用化学式表示:如O:既可表示氧气,也可表示1个氧分子。
分子的定义: 分子是保持物质化学性质的最小粒子。
分子的构成:
分子结构图:
分子的特点
分子的基本性质: (1)分子的体积和质量都很小,如1个水分子的质量约为3×1026kg,1滴水中大约有1.67×1021个水分子。 (2)分子在不断运动着。能闻到远处的花香,品红在水中的扩散都是分子运动的结果。分子的运动速率随温度升高而加快。 (3)分子间具有一定的间隔。最好的证明就是:取50毫升酒精和50毫升水,混合之后,体积却小于100毫升。物质的热胀冷缩就是因为物质分子间的间隔受热增大,遇冷缩小。 (4)不同种物质的分子性质不同。 (5)在化学反应中分子可以再分。
原子的定义
道尔顿的原子模型: 英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。 他的理论主要有以下四点: ①所有物质都是由非常微小的、不可再分的物质微粒即原子组成 ②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同 ③原子是微小的、不可再分的实心球体 ④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。 虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。
原子的性质: ①原子的质量、体积都很小; ②原子在不停地运动; ③原子之间有一定的间隔; ④原子可以构成分子,如一个氧分子是由两个氧原子构成的;也可以直接构成物质,如稀有气体、铁、汞等都是由原子直接构成的; ⑤化学反应中原子不可再分。
由原子构成的物质: 绝大多数的单质是由原子构成的,如金属单质、稀有气体均是由原子直接构成的,碳、硫、磷等大多数的非金属单质也是由原子直接构成的。
原子的定义: 原子是化学变化中最小的粒子。例如,化学变化中,发生变化的是分子,原子的种类和数目都未发生变化。 对原子的概念可从以下三个方面理解: ①原子是构成物质的基本粒子之一。 ②原子也可以保持物质的化学性质,如由原子直接构成的物质的化学性质就由原子保持。 ③原子在化学变化中不能再分,是“化学变化中最小的粒子”,脱离化学变化这一条件,原子仍可再分。
原子的表示方法—元素符号:原子可用元索符号表示:如O既可表示氧元素,也可表示1个氧原子。
分子和原子的联系与区别:
原子结构示意图:
原子结构
原子核的构成: 原子核相对原子来说,体积很小,但质量却很大,原子的质量主要集中在原子核上,电子的质量约为质子质量的1/1836。 质子的质量为:1.6726×10-27kg 中子的质量为:1.6749×10-27kg
核外电子的排布: ①电子层核外电子运动有自己的特点,在含有多个电子的原子里,有的电子通常在离核较近的区域运动,有的电子通常在离核较远的区域运动,科学家形象地将这些区域称为电子层。 ②核外电子的分层排布通常用电子层来形象地表示运动着的电子离核远近的不同:离核越近,电子能量越低;离核越远,电子能量越高。 电子层数、离核远近、能量高低的关系如下所示: 电子层数 1 2 3 4 5 6 7 离核远近 近→ 远 能量高低 低→ 高 ③核外电子排布的规律了解一些核外电子排布的简单规律对理解原子核外电子排布的情况有很重要的作川,核外电子排布的简单规律主要有: a.每层上的电子数最多不超过2n2(n为电子层数),如第一电子层上的电子数可能为1,也可能为2,但最多为2。 b.核外电子排布时先排第一层,排满第一层后,再排第二层,依次类推。 c.最外层上的电子数不超过8;当只有一个电子层时,最外层上的电子数不超过2。
对原子构成的正确理解: (1)原子核位于原子中心,绝大多数由质子和中子构成 (有一种氢原子的原子核内只含有1个质子,无中子),体积极小,密度极大,几乎集中了原子的全部质量,核外电子质量很小,可以忽略不计。 (2)每个原子只有一个原子核,核电荷数(核内质子数)的多少,决定了原了的种类。 (3)在原子中:核电荷数二质子数二核外电子数。 (4)原子核内的质子数不一定等干中子数,如钠原子中,质子数为11,中子数为12。 (5)并不是所有的原子中都有中子,如有一种氢原子中就没有中子。 (6)在原子中,由于质子(原子核)与电子所带电荷数相等,且电性相反,因而原子中虽然存在带电的粒子,但原子在整体上不显电性。
原子的不可再分与原子的结构: 化学变化中原子不会由一种原子变成另外一种原子,即化学变化中原了的种类不变,其原因是化学变化中原子核没有发生变化。如硫燃烧生成了二氧化硫,硫和氧气中分别含有硫原子和氧原子,反应后生成的二氧化硫中仍然含硫原子和氧原子。原子不是最小粒子,只是在化学变化的范围内为“最小粒子”,它还可再分,如原子弹爆炸时的核裂变,就是原子发生了变化。原子尽管很小,但具有一定的构成,是由居于原子中心的带正电的原子核和核外带负电的电子构成的。
构成原子的粒子间的关系:
原子核的构成:
原子的构成:
原子结构示意图
概念:原子结构示意图(如图)是表示原子核电荷数和电子层排布的图示形式。小圈和圈内的数字表示原子核和核内质子数,弧线表示电子层,弧线上的数字表示该层的电子数。
原子结构示意图及各部分的含义:
前20号元素的原子结构示意图:
相对原子质量
定义: 以一种碳一12原子质量的1/12为标准,其他原子的质量跟它的比值就是这种原子的相对原子质量(符号为A)。
原子质量与相对原子质量的区别和联系: 原子的质量相对原子质量区别测定出来的是原子的实际质量,数值非常小,有单位(kg)相比得出的是原子的相对质量,数值大于或等于1,有单位(1)联系某原子的相对原子质量(Ar)=
对概念的理解: ①相对原子质量只是一个比值,不是原子的实际质量。 ②相对原子质最有单位,国际单位为“1”,一般不写也不读。 ③相对原子质≈质子数+中子数,只是约等于,可以用于计算。 ④碳原子有多种,作为相对原子质量标准的碳原子是原子核中有6个质子和6个中子的碳原子。 ⑤只是用这种碳原子实际质量的1/12,而不是这种碳原子的质量。
公式: 某原子的相对原子质量=
离子
离子符号的意义和写法
离子的形成(以Na+、Cl-的形成为例) : ①钠在氯气中燃烧生成氯化钠:2Na+Cl2点燃2NaCl。钠与氯气反应时,每个钠原子失去1个电子形成钠离子(Na+),每个氯原子得到1个电子形成氯离子(Cl-),Na+与Cl-由于静电作用而结合成化合物氯化钠(NaCl) ②从原子结构示意图分析Na+,Cl-的形成过程:
原子团: ①有一些物质如Ca(OH)2,CaCO3等,它们中的一些原子集团如OH-、CO32-,常作为一个整体参加反应,这样的原子集团,叫做原子团,又叫做根。 ②命名:原子团不能独立稳定地存在,它是物质 “分子”组成的一部分。初中化学中的原子团除铵根 (NH4+)在化学式前面部分外,其他原子团在化学式的后一部分一般命名“xx根”,如下面画线部分为原子团: NH4Cl(铵根)Na2CO3(碳酸根)K2SO4(硫酸根)NaOH(氢氧根)KNO3(硝酸根)KMnO4(高锰酸根)K2MnO4(锰酸根)KClO3(氯酸根) NH4NO3(铵根,硝酸根) 其他原子团有:SO32-(亚硫酸根)、NO2-(亚硝酸根),HSO3-(亚硫酸氢根),H2PO4-(磷酸二氢根)等。
离子的表示方法: 离子符号在元素符号的右上角用“+”,“-”号表示离子的电性,数字表示离子所带的电荷,先写数字后写正负号,当数字为1 时,省略不写。如Na+,Cl-,Mg2+,O2-。
关系式: 阳离子所带正电荷数=原子失去电子数=质子数-核外电子数 阴离子所带负电荷数=原子得到电子数=核外电子数-质子数
离子的分类: 阳离子:带正电荷的原子或原子团,如:K+、NH4+ 阴离子:带负电荷的原子或原子团,如:Cl-、SO42-。
离子的定义: 带电的原子或原子团叫离子。
离子结构示意图
概念: 离子结构示意图是用来表示离子核电荷数和电子排布的图示.同种元素的原子和离子其质子数相同.离子的核外电子数和质子数不同,阳离子的质子数大于核电荷数,阴离子的质子数小于核外电子数.主族元素的离子最外层一般为8个电子(最外层是K层为2个电子)。 阴阳离子的结构示意图与原子结构示意图的的区别: 1、结构示意图中,圆圈里的数字=半弧上的数字之和,它就是原子结构示意图。 2、结构示意图中,圆圈里的数字>半弧上的数字之和,它就是阳离子结构示意图。 3、结构示意图中,圆圈里的数字<半弧上的数字之和,它就是阴离子结构示意图。
构成物质的微粒(分子、原子、离子)
构成物质的微粒:分子、原子、离子是构成物质的基本微粒。
分子,原子,离子的比较:
原子与离子的比较:
分子和原子的比较
元素
元素的推断
元素推断题: 元素推断题是中学化学练习中的一种重要题型,该类题型以原子结构、周期表等为题干,集基本概念、基础理论及元素化合物知识于一身,具有综合性比较强的特点。
元素推断的规律:
五、元素周期表中的规律
4.同主族元素的原子序数差值规律:左上右下规律(1)IA族和IIA族(左):b=a+m (2)IIIA族~VIIA族(右):b=a+n (a:上一周期元素的原子序数;b:下一周期元素的原子序数;m:上一周期的元素种数;n:下一周期的元素种数)
2.元素位置的确定(1)根据原子结构示意图 ①电子层数=周期序数 ②最外层电子数=主族序数(2)根据相近的稀有气体元素的原子序数:未知元素的原子序数-与之最接近的稀有气体元素的原子序数 ①得数为正:该稀有气体的下一周期 ②得数为负:与该稀有气体在同一周期
5.阴上阳下规律:(1)原子序数相同的阴阳离子,阴离子在上一周期,阳离子在下一周期(2)离子半径:阴离子>阳离子(3)原子半径:阴离子对应原子<阳离子对应原子
1.各周期的元素种数(n表示周期序数)(1)n为奇数:(n+1)²/2(2)n为偶数:(n+1)²/2
3.IIA族与IIIA族原子序数差值规律(1)不跨过渡+1 (2)跨过过渡+11 (3)跨过锕镧+25
三、根据元素的性质,存在及用途的特殊性来推断元素 1.形成化合物种类最多的元素或单质是自然界中硬度最大的物质的元素,或气态氢化物中氢的质量分数最大的元素:C 2.空气中含量最多的元素或气态氢化物的水溶液呈碱性的元素:N 3.地壳中含量最多的元素,或气态氢化物沸点最高的元素,或氢化物在通常情况下呈液态的元素:O 4.地壳中含量最多的金属元素:Al 5.最活泼的非金属元素,或无正价的元素,或无含氧酸的非金属元素,或无氧酸可腐蚀玻璃的元素,或气态氢化物最稳定的元素,或阴离子的还原性最弱的元素:F 6.最活泼的金属元素,或最高正价氧化物对应的水化物碱性最强的元素,或阳离子氧化性最弱的元素:Cs 7.最容易着火的非金属元素的单质,其元素是:P 8.焰色反应:黄色:Na;紫色:K 9.最轻的单质的元素:H;最轻的金属元素:Li 10.常温下单质呈液态的非金属元素:Br;金属元素:Hg 11.两性元素:Al,Be,Zn 12.元素的气态氢化物和它的最高价氧化物对应的水化物起化合反应的元素:N 13.元素的气态氢化物能和它的氧化物在常温下反应,生成改元素的单质元素:S 14.常见的能形成同素异形体的元素:C,P,O,S
二、根据族序数与周期序数的比值判断金属性与非金属性的强弱(族序数—m;周期—n) 1.m/n<1时,为金属,m/n越小,金属性越强 2.m/n>1时,为非金属,m/n越大,非金属性越强 3.m/n=1时,为两性元素
四、周期表中特殊位置的元素 1.族序数=周期数的元素:H,Be,Al 2.族序数=周期数2倍的元素:C 3.族序数=周期数3倍的元素:O 4.周期数是族序数2倍的元素:Li 5.周期数是族序数3倍的饿元素:Na 6.最高正价与最低负价代数和为零的短周期元素:C,Si 7.最高正价是最低负价绝对值3倍的短周期元素:S 8.除H外,原子半径最小的元素:F 9.短周期中离子半径最大的元素:S 10.最高正化合价不等于族序数的元素:F,O
一、原子结构与元素在周期表中的位置关系的规律 1.周期数=核外电子层数 2.族序数=主族元素的最外层电子数 3.质子数=原子序数=原子的核外电子数 4.主族元素的最高正价=族序数 5.最低负价=最高正价-8
同素异形体
注意事项: 由于构成物质的原子(或分子)的排列不同,或原子的成键、排列方式不同,使得同一种元素产生多种单质。各种同素异形体都是不同的物质,具有不同的物理性质,但化学性质不一定不同。
定义: 同一种元素组成的性质不同的单质叫做同素异形体。 如碳元素就有金刚石、石墨、无定形碳等同素异形体。
初中化学常见的同素异形体: 氧气,臭氧 金刚石,碳,石墨 红磷,白磷
元素符号的意义及写法
元素符号的写法: ①由一个字母表示的元素符号要大写,如:H、C、 S、P,K。 ②由两个字母表示的元素符号,第一个字母要大写,第二个字母要小写(即“一大二小”)。如:Na、Mg、 Ca、Zn、Si。
表示方法: 为了书写和学术交流的方便,采用国际统一的符号来表示各种元素,如:氢元素用“H”来表示,铁元素用“Fe”来表示等。
元素符号和化学式的关系:
地壳中各种元素的含量
海水中元素分布: 海水中的元素分布海洋约占地球表面的70%左右,海水中的元素含量分布如下表所示。其中含量最多的是氧元素。其次是氢元素,这两种元素约占总量的96.5%。
人体中元素分布: 水占人体体重的70%左右。组成人体的元素中含最最多的是氧元索,其次是碳、氢、氮元素。碳,氢、氮三种元素在地壳中的含量较少,但却是生命的必需元素。
地壳中的元素分布: 地壳是由沙、黏土、岩石等组成的,其中含量最多的是氧元素,含量排在第二位至第五位的元素依次是硅、铝、铁、钙等。地壳中含量最高的非金属元素是氧元素;地壳中含量最高的金属元素是铝元素。(关键记清地壳中含量最高的前四位元素)
元素周期表
位置关系:
6. 元素位置推断 (1)元素周期数等于核外电子层数; (2)主族元素的序数等于最外层电子数; (3)确定族数应先确定是主族还是副族,其方法是采用原子序数逐步减去各周期的元素种数,即可由最后的差数来确定。最后的差数就是族序数,差为8、9、10时为VIII族,差数大于10时,则再减去10,最后结果为族序数。 根据各周期所含的元素种类推断,用原子序数减去各周期所含的元素种数,当结果为“0”时,为零族;当为正数时,为周期表中从左向右数的纵行,如为“2”则为周期表中从左向右数的第二纵行,即第ⅡA族;当为负数时其主族序数为8+结果。所以应熟记各周期元素的种数,即2、8、8、18、18、32、32。如:114号元素在周期表中的位置114-2-8-8-18-18-32-32=-4,8+(-4)=4,即为第七周期,第ⅣA族。 稀有气体元素 牢记稀有气体元素的原子序数:2、10、18、36、54、86,通过稀有气体的位置,为某已知原子序数的元素定位。如:要推知33号元素的位置,因它在18和36之间,所以必在第4周期,由36号往左数,应在ⅤA族。
1. 原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同。
2. 单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减; (2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增。 元素的金属性(1)同一周期的元素从左到右金属性递减,非金属性递增; (2)同一主族元素从上到下金属性递增,非金属性递减。
7. 稀有气体元素 牢记稀有气体元素的原子序数:2、10、18、36、54、86,通过稀有气体的位置,为某已知原子序数的元素定位。如:要推知33号元素的位置,因它在18和36之间,所以必在第4周期,由36号往左数,应在ⅤA族。
3. 水化物酸碱性 元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。
4. 非金属气态 元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。
5. 单质的氧化 一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其单原子阴离子的还原性越弱。
子主题
记忆技巧:
1. 性质记忆 化学元素化学元素(43张)
(2)20号元素之后 我是钛,过渡来,航天飞机我来盖; 我是铬,正六铬,酒精过来变绿色; 我是锰,价态多,七氧化物爆炸猛; 我是铁,用途广,不锈钢喊我叫爷; 我是铜,色紫红,投入硝酸气棕红; 我是砷,颜色深,三价元素夺你魂; 我是溴,挥发臭,液态非金我来秀; 我是铷,碱金属,沾水烟花钾不如; 我是碘,升华烟,遇到淀粉蓝点点; 我是铯,金黄色,入水爆炸容器破; 我是钨,高温度,其他金属早呜呼; 我是金,很稳定,扔进王水影无形; 我是汞,有剧毒,液态金属我为独; 我是铀,浓缩后,造原子弹我最牛; 我是镓,易融化,沸点很高难蒸发; 我是铟,软如金,轻微放射宜小心; 我是铊,能脱发,投毒出名看清华; 我是锗,可晶格,红外窗口能当壳; 我是硒,补人体,口服液里有玄机; 我是铅,能储电,子弹头里也出现。
(1)1-20号元素我是氢,我最轻,火箭靠我运卫星; 我是氦,我无赖,得失电子我最菜; 我是锂,密度低,遇水遇酸把泡起; 我是铍,耍赖皮,虽是金属难电离; 我是硼,有点红,论起电子我很穷; 我是碳,反应慢,既能成链又成环; 我是氮,我阻燃,加氢可以合成氨; 我是氧,不用想,离开我就憋得慌; 我是氟,最恶毒,抢个电子就满足; 我是氖,也不赖,通电红光放出来; 我是钠,脾气大,遇酸遇水就火大; 我是镁,最爱美,摄影烟花放光辉; 我是铝,常温里,浓硫酸里把澡洗; 我是硅,色黑灰,信息元件把我堆; 我是磷,害人精,剧毒列表有我名; 我是硫,来历久,沉淀金属最拿手; 我是氯,色黄绿,金属电子我抢去; 我是氩,活性差,霓虹紫光我来发; 我是钾,把火加,超氧化物来当家; 我是钙,身体爱,骨头牙齿我都在;
2. 周期记忆 第一周期:氢氦----侵害 第二周期:锂铍硼碳氮氧氟氖----鲤皮捧碳蛋养福奶 第三周期:钠镁铝硅磷硫氯氩----那美女桂林留绿牙(那美女鬼流露绿牙) 第四周期:钾钙钪钛钒铬锰----嫁改康太反革命 铁钴镍铜锌镓锗----铁姑捏痛新嫁者 砷硒溴氪----生气休克 第五周期:铷锶钇锆铌----如此一告你 钼锝钌----不得了 铑钯银镉铟锡锑----老把银哥印西堤 碲碘氙----地点仙 第六周期:铯钡镧铪----(彩)色贝(壳)蓝(色)河 钽钨铼锇----但(见)乌(鸦)(引)来鹅 铱铂金汞铊铅----一白巾供它牵 铋钋砹氡----必不爱冬(天) 第七周期:钫镭锕----防雷啊!
3. 族记忆 氢锂钠钾铷铯钫——请李娜加入私访 铍镁钙锶钡镭——媲美盖茨被雷 硼铝镓铟铊——碰女嫁音他 碳硅锗锡铅——探归者西迁 氮磷砷锑铋——蛋临身体闭 氧硫硒碲钋——养牛西蹄扑 氟氯溴碘砹——父女绣点爱 氦氖氩氪氙氡——害耐亚克先动
元素周期律:
4. 具体规律:(1)原子半径 同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;同一族中,从上到下,随着原子序数的递增,元素原子半径递增。 (注):阴阳离子的半径大小辨别规律 由于阴离子是电子最外层得到了电子而阳离子是失去了电子 所以,总的说来(同种元素)①阳离子半径原子半径 ②阴离子半径>阳离子半径 ③或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。(不适合用于稀有气体) (2)主要化合价 同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1价到+7价),第一周期除外,第二周期的O、F(O,F无正价)元素除外; 最低负化合价递增(从-4价到-1价)第一周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。 元素最高价的绝对值与最低价的绝对值的和为8 (3)金属性 同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增; a.单质氧化性越强,对应阴离子还原性越弱。 b.单质与氢气反应越容易(剧烈)。 c.其氢化物越稳定。 d.最高价氧化物对应水化物(含氧酸)酸性越强。 同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减; a.单质还原性越强,对应阳离子氧化性越弱。 b.单质与水或酸反应越容易(剧烈)。 c.最高价氧化物对应水化物(氢氧化物)碱性越强。 (4)氧化性 同一周期中,从左到右,随着原子序数的递增,元素的非金属性增强,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。 同一族中,从上到下,随着原子序数的递增,元素的金属性增强,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。 元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。 (5)酸碱性 同一周期中,从左到右,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱); 同一族中,从上到下,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。 (6)与氢结合 同一周期中,从左到右,随着原子序数的递增,单质与氢气化合逐渐容易; 同一族中,从上到下,随着原子序数的递增,单质与氢气化合逐渐困难。 (7)稳定性 同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强; 同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。 (8)此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充: 随着从左到右价层轨道由空到满的逐渐变化,元素也由主要显金属性向主要显非金属性逐渐变化。 随同一族元素中,由于周期越高,电子层数越多,原子半径越大,对核外电子的吸引力减弱,越容易失去,因此排在下面的元素一般比上面的元素金属性更强。
2. 内容:元素的性质随着原子序数的递增而呈周期性的递变规律。随着原子序数的增加,元素的性质呈周期性的递变规律:在同一周期中,元素的金属性从左到右递减,非金属性从左到右递增,在同一族中,元素的金属性从上到下递增,非金属性从上到下递减;同一周期中,元素的最高正价氧化物从左到右递增(没有正价的除外),最低负价氧化物从左到右逐渐增高;同一族的元素性质相近。主族元素同一周期中,原子半径随着原子序数的增加而减小。同一族中,原子半径随着原子序数的增加而增大。如果粒子的电子构型相同,则阴离子的半径比阳离子大,且半径随着电荷数的增加而减小。(如O2->F->Na+>Mg2+)
1. 概念:元素周期律,指元素的性质随着元素的原子序数(即原子核外电子数或核电荷数)的增加呈周期性变化的规律。周期律的发现是化学系统化过程中的一个重要里程碑。
3. 本质:元素核外电子排布的周期性决定了元素性质的周期性。
元素周期表的结构: ①每一横行(周期):元素周期表每一横行叫做一个周期.共有7个横行,即7个周期。每个周期开头是金属元素(第一周期除外),靠近尾部是非金属元素,结尾的是稀有气体元素。同一周期元素的原子具有相同的电子层数。 ②每一纵行(族):元素周期表共有18个纵行,每一个纵行叫做一个族(第8,9,10三个纵行共同组成一个族),共有16个族。 ③每一格:在元素周期表中,每一种元素均占据一格。对于每一格,均包含元素的原子序数、元素符号、元素名称、相对原了质量等内容,如下图所示:
元素周期表的规律:①元素周期表有7个周期,16个族。每一个横行叫作一个周期,每一个纵行叫作一个族。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6)和不完全周期(7)。共有16个族,又分为7个主族(ⅠA-ⅦA),7个副族(ⅠB-ⅦB),一个第ⅧB族,一个零族。元素在周期表中的位置不仅反映了元素的原子结构,也显示了元素性质的递变规律和元素之间的内在联系。②同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(零族元素除外)。失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右递增(第一周期除外,第二周期的O、F元素除外)。③同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子序数递增,元素金属性递增,非金属性递减。
元素周期表的创始人: 德米特里·伊万诺维奇·门捷列夫(1834-1907)是俄罗斯伟大的化学家,自然科学基本定律化学元素周期表的创始人。
元素周期表的意义及应用: ①是学习和研究化学的重要工具。 ②为寻找新元素提供了理论依据。 ③由于元素周期表中位置靠近的元素性质相似,启发人们在元素周期表的一定区域内寻找新物质(如半导体材料、农药、催化剂等)。
概念:根据元素的原子结构和性质,将已知的100多种元素按原子序数(数值上等于核电荷数)科学有序地排列起来所得的表,叫元素周期表。在周期表中,用不同的颜色对金属元素、非金属元素做了分区。
元素周期表图:
元素的定义
概念: 元素是具有相同核电荷数(即核内质子数)的一类原子的总称。
对元素概念的理解: ①元素是以核电荷数(即核内质子数)为标准对原子进行分类。只讲种类,不讲个数。 ②质子数是划分元素种类的标准。质子数相同的原子和单核离子都属于同一种元素。如Na+与Na都属于钠元素,但Na+与NH4+不属于同一种元素。 ③同种元素可以有不同的存在状态。如游离态和化合态。 ④同种元素的离子因带电荷数不同,性质也不同。如Fe2+与Fe3+。 ⑤同种元素的原子可以是不同种原子。如碳元素有三种不同中子数的碳原子:612C、613C、614C.
元素与原子的比较
元素、原子、分子与物质间的关系: 物质的组成可以从宏观和微观两个方面进行描述,其中元素是从宏观上对物质组成的描述,分子、原子是从微观上对物质构成的描述。其关系如下图; 在讨论物质的组成和结构时,应注意规范地运用这些概念,现举例如下: (1)由分子构成的物质,有三种说法(以二氧化碳为例): ①二氧化碳是由氧元素和碳元素组成的。 ②二氧化碳是由二氧化碳分子构成的。 ③每个二氧化碳分子是由2个氧原子和I个碳原子构成的。 (2)由原子(或离子)直接构成的物质(如汞、食盐),有两种说法: ①汞是由汞元素组成的;食盐是由钠元素和氯元素组成的。 ②汞是由汞原子构成的;食盐是由钠离子和氯离子构成的。同位素:
同位素: 同位素指具有相同的质子数,但中子数不同的同一元素的不同原子,如氢有3种同位素,分别称为氕(H)、氘(D)、氚T),即原子核内质子数均为1,但中子数分别为0,1,2的氢原子。 同位素有天然存在的,也有人工合成的。同一元素的同位素虽然中子数不同,但它们的化学性质基本相同。
元素的分类
周期表中的元素可分为金属元素和非金属元素。
元素的分类:
化学变化
物质的变化和性质
物理变化和化学变化的特征和判别
物理性质: 1. 概念: 不需要发生化学变化就直接表现出来的性质。 2. 实例:在通常状态下,氧气是一种无色,无味的气体。 3. 物质的物理性质:如颜色,状态,气味,熔点,沸点,硬度等。
化学性质: 1. 概念:物质在化学变化中表现出来的性质,如铁在潮湿的空气中生成铁锈,铜能在潮湿的空气中生成铜绿。化学性质只能通过化学变化表现出来。
物质的性质和用途的关系: 若在使用物质的过程中,物质本身没有变化,则是利用了物质的物理变化,物质本身发生了变化,变成了其他物质,则是利用了物质的化学性质。 物质的性质与用途的关系: 物质的性质是决定物质用途的主要因素,物质的用途体现物质的性质。
物质的性质与物质的变化的区别和联系
判断是“性质”还是“变化”: 判断某种叙述是指物质的“性质”还是“变化”时,首先要准确把握它们的区别和联系,若叙述中有“能”,“难”,“易”,“会”,“就”等词语,往往指性质,若叙述中有“已经”,“了”,“在”等词语,往往指物质的变化。
有关描述物质的词语: 1. 物理性质: (1)熔点物质从固态变成液态叫熔化,物体开始熔化时的温度叫熔点。 (2)沸点液体沸腾时的温度叫沸点。 (3)压强物体在单位面积上所受到的压力叫压强。 (4)密度物质在单位体积上的质量叫密度,符号为p。 (5)溶解性一种物质溶解在另一种物质里的能力,称为这种物质的溶解性。溶解性跟溶质、溶剂的性质及温度等因素有关。 (6)潮解物质在空气中吸收水分,表面潮湿并逐渐溶解的现象。如固体、NaOH,精盐在空气中易潮解。 (7)挥发性物质由固态或液态变为气体或蒸气的过程二如浓盐酸具有挥发性,可挥发出氯化氢气体 (8)导电性物体传导电流的能力叫导电性:固体导电靠的是自由移动的电子,溶液导电依靠的是自由移动的离子 (9)导热性物体传导热量的能力叫导热性。一般导电性好的材料,其导热性也好。 (10)延展性物体在外力作用下能延伸成细丝的性质叫延性;在外力作用下能碾成薄片的性质叫展性。二者合称为延展性,延展性一般是金属的物理性质之一。 2. 化学性质: (1)助燃性物质在一定的条件下能进行燃烧的性质。如硫具有可燃性。 (2)助燃性物质能够支持燃烧的性质。如氧气具有助燃性 (3)氧化性在氧化还原反应中,能够提供氧元素的性质 (4)还原性在氧化还原反应中,能够夺取含氧化合物中氧元素的性质,初中化学常见的还原性物质(即还原剂)有 H2、CO、C。 (5)酸碱性是指物质能够使酸碱指示剂变色的性质: 酸性溶液能使紫色石蕊变红,碱性溶液能使紫色石蕊变蓝。 (6)稳定性物质不易与其他物质发生化学反应或自身不易发生分解反应的性质,如稀有气体化学性质稳定。 (7)风化结晶水合物(如Na2CO3·10H2O)在干燥的环境中失去结晶水的性质。
物理性质和化学性质的区别和应用
物理性质: 1. 概念: 不需要发生化学变化就直接表现出来的性质。 2. 实例:在通常状态下,氧气是一种无色,无味的气体。 3. 物质的物理性质:如颜色,状态,气味,熔点,沸点,硬度等。 化学性质: 1. 概念:物质在化学变化中表现出来的性质,如铁在潮湿的空气中生成铁锈,铜能在潮湿的空气中生成铜绿。 化学性质只能通过化学变化表现出来。
物质的性质和用途的关系: 若在使用物质的过程中,物质本身没有变化,则是利用了物质的物理变化,物质本身发生了变化,变成了其他物质,则是利用了物质的化学性质。 物质的性质与用途的关系: 物质的性质是决定物质用途的主要因素,物质的用途体现物质的性质。
物质的性质与物质的变化的区别和联系
判断是“性质”还是“变化”: 判断某种叙述是指物质的“性质”还是“变化”时,首先要准确把握它们的区别和联系,若叙述中有“能”,“难”,“易”,“会”,“就”等词语,往往指性质,若叙述中有“已经”,“了”,“在”等词语,往往指物质的变化。
有关描述物质的词语: 1. 物理性质: (1)熔点物质从固态变成液态叫熔化,物体开始熔化时的温度叫熔点。 (2)沸点液体沸腾时的温度叫沸点。 (3)压强物体在单位面积上所受到的压力叫压强。 (4)密度物质在单位体积上的质量叫密度,符号为p。 (5)溶解性一种物质溶解在另一种物质里的能力,称为这种物质的溶解性。溶解性跟溶质、溶剂的性质及温度等因素有关。 (6)潮解物质在空气中吸收水分,表面潮湿并逐渐溶解的现象。如固体、NaOH,精盐在空气中易潮解。 (7)挥发性物质由固态或液态变为气体或蒸气的过程二如浓盐酸具有挥发性,可挥发出氯化氢气体 (8)导电性物体传导电流的能力叫导电性:固体导电靠的是自由移动的电子,溶液导电依靠的是自由移动的离子 (9)导热性物体传导热量的能力叫导热性。一般导电性好的材料,其导热性也好。 (10)延展性物体在外力作用下能延伸成细丝的性质叫延性;在外力作用下能碾成薄片的性质叫展性。二者合称为延展性,延展性一般是金属的物理性质之一。 2. 化学性质: (1)助燃性物质在一定的条件下能进行燃烧的性质。如硫具有可燃性。 (2)助燃性物质能够支持燃烧的性质。如氧气具有助燃性 (3)氧化性在氧化还原反应中,能够提供氧元素的性质 (4)还原性在氧化还原反应中,能够夺取含氧化合物中氧元素的性质,初中化学常见的还原性物质(即还原剂)有 H2、CO、C。 (5)酸碱性是指物质能够使酸碱指示剂变色的性质: 酸性溶液能使紫色石蕊变红,碱性溶液能使紫色石蕊变蓝。 (6)稳定性物质不易与其他物质发生化学反应或自身不易发生分解反应的性质,如稀有气体化学性质稳定。 (7)风化结晶水合物(如Na2CO3·10H2O)在干燥的环境中失去结晶水的性质。
物质的量
定义: 物质的量是表示物质所含微粒数(N)(如:分子,原子等)与阿伏加德罗常数(NA)之比,即n=N/NA。 它是把微观粒子与宏观可称量物质联系起来的一种物理量。 其表示物质所含粒子数目的多少。 公式:物质的量=物质所含微粒数目/阿伏加德罗常数,用符号表示:n =N/NA
阿伏加德罗常数NA: 把6.02×1023mol-1叫作阿伏加德罗常数。
化学反应
氧化剂和还原剂
氧化剂 1. 概念: 氧化剂是氧化还原反应里得到电子或有电子对偏向的物质,也即由高价变到低价的物质。氧化剂从还原剂处得到电子自身被还原变成还原产物。氧化剂和还原剂是相互依存的。氧化剂在反应里表现氧化性。氧化能力强弱是氧化剂得电子能力的强弱含有容易得到电子的元素的物质常用作氧化剂,在分析具体反应时,常用元素化合价的升降进行判断:所含元素化合价降低的物质为氧化剂。 2. 常见的氧化剂: 氧气、高锰酸钾、氯酸钾、过氧化氢、氧化铜等。
还原剂: 1. 概念: 还原剂是在氧化还原反应里,失去电子或有电子偏离的物质。还原剂本身在广义上说,也是抗氧化剂,具有还原性,被氧化,其产物叫氧化产物。还原与氧化反应是同时进行的,即是说,还原剂在与被还原物进行氧化反应的同时,自身也被氧化,而成为氧化物,所含的某种物质的化合价升高的反应物是还原剂。 2. 常见的还原剂: 氢气、碳、一氧化碳等。
氧化剂和还原剂的判别方法:
氧化剂: 在氧化还原反应里,遵循这样一个规律,升失氧还氧,降得还氧还。因为初学者一般无法较为准确的把握氧化还原反应的如乱麻一样的对氧化剂和还原剂的判读,故有这样一个绕口令,什么意思呢,就是说在氧化还原反应里,化合价升高的物质失去电子,被氧化,发生氧化反应,做还原剂(有还原性)所得的产物是氧化产物,具有氧化性,化合价降低的物质得到电子,在反应中被还原,发生还原反应,做氧化剂,(有氧化性)产物为还原产物,具有还原性。在这里要注意一点反应规律,即还原剂的还原性强于其他反应物,氧化剂同理。
还原剂: 在化合价有改变的氧化还原反应中,化合价由低变高的物质称作还原剂,可做抗氧化剂,具有还原性,被氧化,其产物叫氧化产物。 还原剂是相对的概念,因为同一物质可能随反应物质的不同,呈现还原剂或氧化剂的特性。 如:SO2+2HNO3→H2SO4+2H2O+NO2的反应中中SO2是还原剂。但在H2S+SO2→S+H2O中,SO2却是氧化剂。
氧化性和还原性
定义: 物质在化学反应中得电子的能力; 处于高价态的物质一般具有氧化性, 如:部分非金属单质:O2,Cl2;部分金属阳离子:Fe3+,MnO4-(Mn7+)等等。 处于低价态的物质一般具有还原性(如:部分金属单质:Cu,Ag(金属单质只具有还原性),部分非金属阴离子:Br-,I-等等。
判断方法: 根据化学方程式判断: 氧化剂(氧化性)+还原剂(还原性)===还原产物+氧化产物 氧化剂----还原产物 得电子,化合价降低,被还原,发生还原反应 还原剂---氧化产物 失电子,化合价升高,被氧化,发生氧化反应 氧化性:氧化剂>氧化产物 还原性:还原剂>还原产物
氧化反应和还原反应、氧化性和还原性的区别与联系: 1. 区别: (1)氧化反应:物质跟氧发生的化学反应还原反应:含氧化合物里的氧被夺去的化学反应 (2)氧化性:指氧化剂失去氧的能力还原性:指还原剂得到氧的能力物质的性质 2.联系: 得到氧的物质一被氧化,发生氧化反应; 失去氧的物质一被还原,发生还原反应。
催化剂和催化作用
催化剂及催化作用的概念:
催化剂的特点: 催化剂概念的要点可概括为“一变”“二不变”。 (1)“一变”是指催化剂能改变其他物质的化学反应速率,这里“改变”包括加快和减慢,也就是说催化剂可以加快反应速率,也可以减慢反应速率。 (2)“二不变”指催化剂本身的化学性质不变。
易错点: ①催化剂一般有选择性,即仅能对某一反应或某一类型的反应起催化作用。如二氧化锰是过氧化氢分解的催化剂,但对其他的反应不一定是。 ②对某些反应来说,催化剂也可能不止一种,如能催化过氧化氢分解的催化剂除二氧化锰外,还有硫酸铜溶液、红砖粉(主要成分为氧化铁)等。 ③催化剂可以重复使用。
催化剂在化工生产中的作用: 催化剂在化工生产中有重要作用,人多数化工生产都有催化剂参与。 例如,在石油炼制过程中,用高效催化剂生产汽油、煤油等;在汽车尾气处理,归用催化剂促进有害气体的转化;酿造工业和制药工业都要用酶作催化剂,某些酶制剂还是宝贵的药物。
氧化反应
还原反应
定义: 还原反应:含氧化合物中的氧被夺去的反应叫还原反应。如C+2CuO高温2Cu+CO2↑,CuO被夺去了氧变成了铜,发生了还原反应。
氧化还原反应和非氧化还原反应: 1. 氧化还原反应 :一种物质被氧化,同时另一种物质被还原的反应叫做氧化还原反应。(高中阶段会具体讲解) 2. 非氧化还原反应:(高中阶段会具体讲解) 非氧化还原反应指化学反应过程中既没有氧的得失,一也没有化合价发生改变的反应。 复分解反应是非氧化还原反应。如HCl+AgNO3==AgCl↓+HNO3
分解反应
概念: 由一种物质生成两种或两种以上物质的反应
特征:一变多
表达式:A = B + C
初中常见的分解反应:
按产物种类多少分类:
1.分解成两种单质 ⑴气态氢化物的分解 碘化氢的分解2HI=H2↑+I2 ⑵氯化银的分解 氯化银的分解2AgCl=2Ag+Cl2↑ ⑶电解 电解水2H2O通电2H2↑+O2↑
2.分解成两种化合物 ⑴不稳定盐类的分解 碳酸钙的高温分解CaCO3高温CaO+CO2↑ ⑵不稳定弱碱的分解 氢氧化铝受热分解2Al(OH)3=Al2O3+3H2O ⑶不稳定弱酸的分解 碳酸的分解H2CO3=H2O+CO2↑ ⑷含结晶水的盐类的脱水 十水碳酸钠的风化Na2CO3·10H2O=Na2CO3+10H2O
3.分解成一种单质和一种化合物 ⑴不太稳定的盐类的分解 氯酸钾的催化分解2KClO3 加热和锰酸钾 2KCl+3O2↑ ⑵不稳定酸的分解 次氯酸的分解2HClO=2HCl+O2 ⑶双氧水的分解 受热(或以二氧化锰为催化剂)分解2H2O2=2H2O+O2
4.有机物的分解 甲烷的裂解2CH4=C2H2+3H2
二、加热分解的产物有三种
1.不稳定盐类的分解 ⑴碳酸氢钠受热分解 2NaHCO3=Na2CO3+CO2↑+H2O ⑵亚硫酸的酸式强碱盐受热分解 亚硫酸氢钠受热分解 2NaHSO3=Na2SO4+SO2↑+H2O ⑶铵盐的受热分解 碳酸铵受热分解(NH4) 2CO3=2NH3↑+H2O↑+CO2↑ ⑷高锰酸钾受热分解 2KMnO4加热K2MnO4+MnO2+O2↑ ⑸硝酸盐的受热分解 硝酸银的受热分解2AgNO3=2Ag+2NO2↑+O2↑
2.硝酸的分解 4HNO3=4NO2+O2+2H2O
3.电解水溶液 ⑴电解饱和食盐水2NaCl+2H2O=2NaOH+H2↑+Cl2↑ ⑵不稳定酸的分解 次氯酸的分解2HClO=2HCl+O2 ⑶双氧水的分解 受热(或以二氧化锰为催化剂)分解2H2O2=2H2O+O24. 有机物的分解 甲烷的裂解2CH4=C2H2+3H2
按反应物种类进行分类:
1.酸的分解反应。 ⑴含氧酸=非金属氧化物+水 如H2CO3=CO2↑+H2O,H2SO3=SO2↑+H2O ⑵某些含氧酸的分解比较特殊, 如硝酸的分解: 4HNO3(浓)=4NO2↑+O2↑+2H2O, 次氯酸分解 2HClO=2HCl+O2↑ 磷酸脱水 4H3PO4高温(HPO3)4+4H2O↑ ;2H3PO4高温H4P2O7+H2O↑ 3H3PO4高温H5P3O10+2H2O↑
2.碱的分解反应: 活泼金属的氢氧化物较难分解,难溶性碱一般都较易分解: 2Al(OH)3=Al2O3+3H2O, 2Fe(OH)3=Fe2O3+3H2O, Cu(OH)2=CuO十H2O。
3.盐的分解反应: 碳酸盐、硝酸盐、铵盐一般都较易分解,且反应表现出一定的规律性。 ⑴碳酸盐的分解: 碳酸盐=金属氧化物十CO2↑ 如CaCO3高温CaO+CO2↑,CuCO3高温CuO+CO2↑K2CO3、Na2CO3比较稳定,很难分解,而其酸式盐较易分解: 2NaHCO3=Na2CO3+CO2↑+H2O Ca(HCO3)2=CaCO3+CO2↑+H2O ⑵硝酸盐的分解反应。硝酸盐受热均易分解,并放出氧气,其规律大体如下: 活动性强的金属(K、Ca、Na)硝酸盐=亚硝酸盐+O2↑: 如 2KNO3=2KNO2+O2↑。 处于活动性顺序表中间的金属(Mg、Cu等)的硝酸盐=金属氧化物+NO2↑+O2↑: 如2Mg(NO3)2=2MgO+4NO2↑+O2↑ 2Cu(NO3)2=2CuO+4NO2↑+O2↑ 不活动金属(Hg、Ag、Au)的硝酸盐=金属+NO2↑+O2↑: 如 Hg(NO3)2=Hg+2NO2↑+O2↑; 2AgNO3=2Ag+2NO2↑+O2↑ ⑶铵盐的分解反应。铵盐受热易分解,一般都有氨气放出: 如(NH4)2SO4=2NH3↑+H2SO4 ;NH4HCO3=NH3↑+CO2↑+H2O。 ⑷其它盐类的分解反应 如 2KClO3=2KCl+3O2↑ 2KMnO4=K2MnO4+MnO2+O2↑
4.氧化物的分解反应: 非金属氧化物一般不容易发生分解反应 2H2O2=H2↑+O2↑ 金属氧化物一般分解的规律是: 金属活动顺序表中,排在铜后的金属氧化物受热易分解: 如 2HgO=2Hg+O2↑,2Ag2O=4Ag+O2↑ 活泼的金属氧化物,给它们熔化态通电流可使其分解: 如2Al2O3(熔化)=4Al+3O2↑
化合反应
概念: 指的是由两种或两种以上的物质生成一种新物质的反应。其中部分反应为氧化还原反应,部分为非氧化还原反应。 此外,化合反应一般释放出能量。
注意: 不是所有的化合反应都是放热反应。
特征: 多变一
表达式: a+b=ab
初中常见化合反应:
1.金属+氧气→金属氧化物 很多金属都能跟氧气直接化合。例如常见的金属铝接触空气,它的表面便能立即生成一层致密的氧化膜,可阻止内层铝继续被氧化。4Al+3O2=2Al2O3
2.非金属+氧气→非金属氧化物 经点燃,许多非金属都能在氧气里燃烧,如:C+O2点燃CO2
3.金属+非金属→无氧酸盐 许多金属能与非金属氯、硫等直接化合成无氧酸盐。如 2Na+Cl2点燃2NaCl
4.氢气+非金属→气态氢化物 因氢气性质比较稳定,反应一般需在点燃或加热条件下进行。如 2H2+O2点燃2H2O
5.碱性氧化物+水→碱. 多数碱性氧化物不能跟水直接化合。判断某种碱性氧化物能否跟水直接化合,一般的方法是看对应碱的溶解性,对应的碱是可溶的或微溶的,则该碱性氧化物能与水直接化合。如: Na2O+H2O=2NaOH. 对应的碱是难溶的,则该碱性氧化物不能跟水直接化合。如CuO、Fe2O3都不能跟水直接化合。
6.酸性氧化物+水→含氧酸 . 除SiO2外,大多数酸性氧化物能与水直接化合成含氧酸。如: CO2+H2O=H2CO3
7.碱性氧化物+酸性氧化物→含氧酸盐 Na2O+CO2=Na2CO3。大多数碱性氧化物和酸性氧化物可以进行这一反应。其碱性氧化物对应的碱碱性越强,酸性氧化物对应的酸酸性越强,反应越易进行。
8.氨+氯化氢→氯化铵 氨气易与氯化氢化合成氯化铵。如: NH3+HCl=NH4Cl
9.硫和氧气在点燃的情况下形成二氧化硫 S+O2点燃SO2
10.特殊化合反应 公式 A+B+…+N→X(有些化合反应属于燃烧反应) 例如:铁+氧气点燃四氧化三铁 3Fe+2O点燃2Fe3O4
置换反应
概念: 由一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应。
特征: 单质+化合物→新单质+新化合物
表达式: A+BC=B+AC
置换反应的规律和发生条件:
复分解反应
复分解反应: (1)概念:两种化合物互相交换成分,生成另外两种化合物的反应,形如AB+CD==AD+CB (2)特点: ①一般在水溶液里进行,两种化合物中的离子互换。 ②元素的化合价不改变。 (3)复分解反应的实质:复分解反应从微观角度看,是反应物之间相互交换离子,阴、阳离子重新结合生成沉淀或气体或水。如酸与碱发生中和反应的实质为:H++OH-==H2O。
复分解反应发生的条件:
常见的复分解反应: ①常见的有沉淀生成的复分解反应 Na2CO3+Ca(OH)2=CaCO3+2NaOH CuSO4+2NaOH==Cu(OH)2↓+Na2SO4 FeCl3+3NaOH==Fe(OH)3↓+3NaCl NaCl+AgNO3==AgCl↓+NaNO3 H2SO4+BaCl2==BaSO4↓+2HCl ②常见的有气休生成的复分解反应 CaCO3+2HCl==CaCl2+H2O+CO2↑ 2NH4Cl+Ca(OH)2==CaCl2+2NH3↑+2H2O ③常见的有水生成的复分解反应 NaOH+HCl==NaCl+H2O Na2CO3+HCl==NaCl+H2O+CO2↑
易错点: 例如CO2+Ca(OH)2====CaCO3↓+H2O这样的反应不是复分解反应。因为,根据复分解反应的定义。只有两种化合物互相交换成分,生成两种新的化合物的反应才是复分解反应。如:H2SO4+BaCl2====BaSO4↓+2HCl这个反应中,硫酸的成分(氢离子和硫酸根离子)与氯化钡的成分(氯离子和钡离子)互相交换,形成了硫酸钡和盐酸。而CO2+Ca(OH)2==CaCO3↓+H2O反应中二氧化碳的成分(C和O2)并没有与氢氧化钙的成分(钙离子和氢氧根离子)互相交换,所以这样的反应不是复分解反应。同理,CO2+2NaOH==Na2CO3+H2O和SO2+2NaOH===Na2SO3+H2O之类的反应也不是复分解反应。
质量守恒定律
质量守恒定律
质量守恒定律的概念及对概念的理解: (1)概念:参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和。这个规律就叫做质量守恒定律。 (2)对概念的理解: ①质量守恒定律只适用于化学反应,不能用于物理变化例如,将2g水加热变成2g水蒸气,这一变化前后质量虽然相等,但这是物理变化,不能说它遵守质量守恒定律。 ②质量守恒定律指的是“质量守恒”,不包括其他方面的守恒,如对反应物和生成物均是气体的反应来说,反应前后的总质量守恒,但是其体积却不一定守恒。 ③质量守恒定律中的第一个“质量”二字,是指“参加”化学反应的反应物的质量,不是所有反应物质量的任意简单相加。 例如,2g氢气与8g氧气在点燃的条件下,并非生成10g水,而是1g氢气与8g氧气参加反应,生成9g水 ④很多化学反应中有气体或沉淀生成,因此“生成的各物质质量总和”包括了固态、液态和气态三种状态的物质,不能把生成的特别是逸散到空气中的气态物质计算在“总质量”之外而误认为化学反应不遵循质量守恒定律
质量守恒定律的微观实质:
(1)化学反应的实质在化学反应过程中,参加反应的各物质(反应物) 的原子,重新组合而生成其他物质(生成物)的过程。由分子构成的物质在化学反应中的变化过程可表示为:
(2)质量守恒的原因在化学反应中,反应前后原子的种类没有改变,数目没有增减,原子本身的质量也没有改变,所以,反应前后的质量总和必然相等。 例如,水通电分解生成氢气和氧气,从微观角度看:当水分子分解时,生成氢原子和氧原子,每两个氢原子结合成一个氢分子,每两个氧原子结合成一个氧分子。
质量守恒定律的延伸和拓展理解: 质量守恒定律要抓住“六个不变”,“两个一定变”“两个可能变”。 如从水电解的微观示意图能得出的信息: ①在化学反应中,分子可以分成原子,原子又重新组合成新的分子; ②一个水分子是由两个氢原子和一个氧原子构成的,或一个氧分子由两个氧原子构成、一个氢分子由两个氢原子构成。或氢气、氧气是单质,水是化合物 ③原子是化学变化中的最小粒子。 ④水是由氢、氧两种元素组成的。 ⑤在化学反应,氧元素的种类不变。 ⑥在化学反应中,原子的种类、数目不变。 ⑦参加反应的各物质的质量总和等于反应后生成的各物质的质量总和。
质量守恒定律的发现: 1. 早在300多年前,化学家们就对化学反应进行定量研究。1673年,英国化学家波义耳(RobertBoyle, 1627-1691)在一个敞口的容器中加热金属,结果发现反应后容器中物质的质量增加了。 2. 1756年,俄国化学家罗蒙诺索夫把锡放在密闭的容器里锻烧,锡发生变化,生成白色的氧化锡,但容器和容器里物质的总质量,在锻烧前后并没有发生变化。经过反复实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。 3. 1774年,法国化学家拉瓦锡用精确的定量实验法,在密封容器中研究氧化汞的分解与合成中各物质质量之间的关系,得到的结论是:参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和。 4. 后来.人们用先进的测址仪器做了大量精度极高的实验,确认拉瓦易的结论是正确的。从此,质量守恒定律被人们所认识。
质量守恒定律的应用: (1)解释问题 ①解释化学反应的本质—生成新物质,不能产生新元素(揭示伪科学的谎言问题)。 ②解释化学反应前后物质的质量变化及用质量差确定某反应物或生成物。 (2)确定反应物或生成物的质量 确定反应物或生成物的质量时首先要遵循参加反应的各种物质的质量总量等于生成的各种物质的质量总和;其次各种物质的质量比等于相对分子质量与化学计量数的乘积之比。 (3)确定物质的元素组成 理解在化学反应前后,元素的种类不发生改变。可通过计算确定具体的元素质量。 (4)确定反应物或生成物的化学式 比较反应前后各种原子个数的多少,找出原子个数的差异。但不能忘记化学式前的化学计量数。 (5)确定某物质的相对分子质量(或相对原子质量) 运用质量守恒定律确定某物质的相对分子质量 (或相对原子质量)时,首先寻找两种已知质量的物质,再根据化学方程式中各物质间的质量成正比即可计算得出。注意观察物质化学式前面的化学计量数。 (6)确定化学反应的类型 判定反应的类型,首先根据质量守恒定律判断反应物、生成物的种类和质量(从数值上看,反应物质量减少,生成物质最增加)。如果是微观示意图,要对比观察减少的粒子和增加的粒子的种类和数目再进行判断。 (7)判断化学方程式是否正确 根据质量守恒定律判断化学方程式的对与否关键是看等号两边的原子总数是否相等,同时注意化学式书写是否有误。
化学反应方程式的书写
化学方程式的书写原则遵循两个原则: 一是必须以客观事实为基础,绝不能凭空设想、主观臆造事实上不存在的物质和化学反应; 二是遵循质量守恒定律,即方程式两边各种原子的种类和数目必须相等。
书写化学方程式的具体步骤: (1)写:根据实验事实写出反应物和生成物的化学式。反应物在左,生成物在右,中间用横线连接,如: H2+O2——H2O,H2O——H2+O2。 (2)配:根据反应前后原子的种类和数目不变的原则,在反应物和生成物的化学式前配上适当的化学计量数,使各种元素的原子个数在反应前后相等,然后将横线变成等号。配平后,化学式前的化学计量数之比应是最简整数比,如:2H2+O2=2H2O,2H2O= 2H2+O2。 (3)注:注明反应条件【如点燃、加热(常用“△”表示)、光照、通电等〕和生成物的状态(气体用“↑”。沉淀用“↓”。)。如:2H2+O2点燃2H2O,2H2O通电2H2↑+O2↑。
化学计量数: 化学计量数指配平化学方程式后,化学式前面的数字。在化学方程式中,各化学式前的化学计量数之比应是最简整数比,计数量为1时,一般不写出。
书学化学方程式的常见错误:
书写化学方程式时条件和气体、沉淀符号的使用: (1).“△”的使用 ①“△”是表示加热的符号,它所表示的温度一般泛指用酒精灯加热的温度。 ②如果一个反应在酒精灯加热的条件下能发生,书写化学方程式时就用“△”,如:2KMnO4△K2MnO4+MnO2+O2↑。 ③如果一个反应需要的温度高于用酒精灯加热的温度,一般用“高温”表示;如:CaCO3高温CaO+ CO2↑ (2)“↑”的使用 ①“↑”表示生成物是气态,只能出现在等号的右边。 ②当反应物为固体、液体,且生成的气体能从反应体系中逸出来,气体化学式后应该加“↑”。如Fe+ 2HCl==FeCl2+H2↑。 ③当反应物是溶液时,生成的气体容易溶于水而不能从反应体系中逸出来,则不用“↑”,如:H2SO4+ BaCl2==FeCl2+2HCl ④只有生成物在该反应的温度下为气态,才能使用“↑”。 ⑤若反应物中有气态物质,则生成的气体不用标 “↑”。如:C+O2点燃CO2 (3)“↓”使用 ①“↓”表示难溶性固体生成物,只能出现在等号的右边 ②当反应在溶液中进行,有沉淀生成时,用 “↓”,如:AgNO3+HCl==AgCl↓+HNO3 ③当反应不在溶液中进行,尽管生成物有不溶性固体,也不用标“↓”,如:2Cu+O2△2CuO ④反应在溶液中进行,若反应物中有难溶性物质,生成物中的难溶性物质后面也不用标“↓”。如:Fe +CuSO4==FeSO4+Cu.
化学方程式中“↑”和“↓”的应用: ①“↑”或“↓”是生成物状态符号,无论反应物是气体还是固体,都不能标“↑”或“↓”; ②若反应在溶液中进行且生成物中有沉淀,则使用“↓”;若不在溶液中进行,无论生成物中是否有固体或难溶物,都不使用“↓”; ③常温下,若反应物中无气体,生成物中有气体.
提取信息书写化学方程式的方法: 书写信息型化学方程式是中考热点,题目涉及社会、生产、生活、科技等各个领域,充分体现了化学学科的重要性,并考查了同学们接受信息、分析问题和解决问题的能力。解答这类题目的关键是掌握好化学方程式的书写步骤,可按两步进行:首先正确书写反应物和生成物的化学式,并注明反应条件及生成物状态;第二步就是化学方程式的配平。
化学反应方程式的意义
化学方程式的概念: 用化学式来表示化学反应的式子。如C+O2点燃CO2是碳充分燃烧的化学方程式。
化学方程式的意义、读法:
(1)化学方程式的意义 化学方程式还能表示化学反应的类型。如化学方程式Zn+H2SO4==ZnSO4+H2↑是一个置换反应。
(2)化学方程式的三种读法 化学方程式中“+”和“=”虽与数学中的“+”和 “=”形式一样,但其意义却不相同。化学方程式中的 “+”,读时不读“加”而是读“和”或“与”;化学方程式中的“=”也不同于数学意义上的“=”,它表示“生成” 的意思,同时表明在化学反应前后有两个不变:原子种类不变,每种原子的总个数也不变,“=”读作“反应生成”,而不能读作“等于”。 一个化学方程式往往有三种读法,现以2H2O通电 2H2↑+O2↑为例加以说明。 ①质的方面:在通电的条件下,水分解生成氢气和氧气。这种读法说明了化学反应中物质的变化,能表示出反应物、生成物、反应条件。 ②粒子方面:在通电的条件下,每2个水分子分解生成2个氢分子和1个氧分子。这种读法揭示了化学反应中物质粒子结构的变化,并反映出粒子个数的比例关系。 ③量的方面:在通电的条件下,36份质量的水分解生成4份质量的氢气和32份质量的氧气。这种读法表明了化学反应前后物质的质量守恒关系。
化学反应方程式的计算
综合计算:
1. 综合计算题的常见类型 (1)将溶液的相关计算与化学方程式的相关计算结合在一起的综合计算。 (2)将图像、图表、表格、实验探究与化学方程式相结合的综合计算
3.溶质质量分数与化学方程式相结合的综合计算 溶质质量分数与化学方程式相结合的综合计算题,问题情景比较复杂。解题时,应首先明确溶液中的溶质是什么,溶质的质量可通过化学方程式计算得出,其次应明确所求溶液的质量如何计算,最后运用公式汁算出溶液的溶质质量分数 解题的关键是掌握生成溶液质量的计算方法:生成溶液的质量=反应前各物质的质量总和一难溶性杂质(反应的混有的且不参加反应的)的质量一生成物中非溶液(生成的沉淀或气体)的质量。 (1)固体与液体反应后有关溶质质量分数的计算于固体与液体发生反应,求反应后溶液中溶质的质量分数,首先要明确生成溶液中的溶质是什么,其次再通过化学反应计算溶质质量是多少(有时溶质质量由几个部分组成),最后分析各量间的关系,求出溶液总质量,再运用公式计算出反应后溶液中溶质的质量分数。 对于反应所得溶液的质量有两种求法: ①溶液组成法:溶液质节=溶质质量+溶剂质量,其中溶质一定是溶解的,溶剂水根据不同的题目通常有两种情况:原溶液中的水;化学反应生成的水。 ②质量守恒法:溶液质量=进入液体的固体质量(包括由于反应进入和直接溶入的)+液体质量-生成不溶物的质量-生成气体的质量。 (2)对于液体与液体的反应,一般是酸碱、盐之间发生复分解反应,求反应后溶液中溶质的质量分数。此类计算与固体和液体反应后的计算类似,自先应明确生成溶液中的溶质是什么,其次再通过化学应应计算溶质质量是多少(往往溶质质量由几个部分组成),最后分析各量间的关系、求出溶液总质量再运用公式计算出反应后溶液中溶质的质量分数此类反应发生后,溶液质量也有两种求法: ①溶液组成法(同上)。 ②质量守恒法:溶液质量=所有液体质量之和-生成沉淀的质量-生成气体的质量。
4. 图像、表格、实验探究与化学方程式相结合的综合计算 在近几年中考题出现了以图像,表格为载体的化学计算题这类题的特点是利用数学方法将化学实验数据进行处理和表达,常常以坐标曲线、图像、表格等形式将解题信息呈现。解答此类题目时,受求学生能够对图像,表格进行科学分析从中获取有用信息并结合化学知识将有用信息,应用到解决实际问题中 (1)图像与化学方程式结台的综合计算 图像型计算题是常见的题型是坐标曲线题,其特点是借助数学方法中的坐标图,把多个元素对体系变化的影响用曲线图直观表示出来。 坐标系中的曲线图不仅能表示化学反应,还能较好地反映化学变化的过程,读图时,要善于从曲线图中捕捉到“三点”,(起点,拐点,终点),并分析其含义。特别是要重点了解拐点表示对应两种物质一定恰好完全反应,这是此类题的关键。 (2)表格与化学方程式结合的综合计算 这类题往往给出一组或多组数据或条件,通过对表格中数据或条件的分析,对比,解答有关问题或进行计算。 策略:要通过仔细阅读,探究表格中各组数据之间内在的规律,努力从“变”中找“不变”,及时发现规律之中的矛盾点,从“不变”中找“变”,进而分析矛盾的根源,解决问题。 (3)实验探究与化学方程式相结合的综合计算 做实验探究的综合计算题时,学生应将化学计算与化学实验紧密结合,在对实验原理,实验数据进行分析理解的基础上,理出解题思路,在解题过程中要特别注意实验数据与物质(或元素)质量间的关系,解题的关键是理清思路,找出正确有用数据,认真做好每一步计算。
5. 化学方程式计算中的天平平衡问题: 化学计算中有关天平平衡问题的计算一般指眨应前灭平已处于平衡状态,当托盘两边烧杯中加入物质后,引起烧杯内物质净增量的变化,从而确定天平能否仍处于平衡的状态。解此类题目必须理顺以下关系:烧杯内物质净增质量=加入物质质量一放出气体质量;当左边净增质量=右边净增质量时,天平仍处于平衡状念;当左边净增质量>右边净增质量时,天半指针向左偏转;当左边净增质量<右边净增质量时,天平指针向有偏转。
6. 化学方程式计算的技巧与方法:
(2)关系式法 关系式法就是根据化学式、化学方程式和溶质质量分数等概念所包含的各种比例关系,找出已知量与未知量之间的比例关系式直接列比例式进行计算的方法。关系式法有如下两种类型. (1)纵向关系式 经过多步的连续反应,即后一反应的反应物为前一反应的生成物,采用“加合”,将多步运算转化为一步计算 (2)横向关系式 ①几种不同物质中含相同的量,根据该量将几种不同物质直接联系起来进行运算 ②有多个平行的化学反应即多个反应的生成物有一种相同,根据这一相同的生成物,找出有关物质的关系式,依此关系式进行计算可建华运算过程。 关系式法抓住已知量与未知量之间的内在关系,建立关系式,化繁为简,减少计算误差,是化学计算常用方法之一。
(3)平均值法 混合物中确定各组分的有关计算是初中化学计算中难度较大的一种题型.如混合物中各组分均能与某一物质反应且得到的产物中有同一种物质或混合物中各组成成分均含有同一种元素,要确定其成分的有天计算可用平均值法求解。解答此类题的关键是要先找出混合物中各成分的平均值(如平均二价相对原子质节、平均相对分子质量、平均质量、平均质量分数等),此平均值总是介于组分中对应值的最大值与最小值之间。利用这些平均值解题的方法叫做平均值法。
(2)相对分子质量平均值法 由化合物组成的混合物,要判断混合物中各物质是否存在或计算某成分的质量,可用相对分子质量平均值法解题。解题时根据化学方程式和其他方法求出平均相对分子质量,混合物中一种物质的相对分子质量如果大于平均相对分子质量,则另一种物质的相对分子质量必小于平均相对分子质量,据此可求出正确答案。
(3)质量平均值法 利用混合物中平均质量解题方法。
(4)质量分数平均值法 混合物中某元素的质量分数总是介于混合物中一种成分该元素的质量分数与另一种成分中该元素的质量分数之间,据此可确定混合物的组成。
4. 守恒法 化学变化中等量关系的简历,有一条很重要的定律——质量守恒定律,即参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和。在实际应用中,上述定律演绎为:a化学反应前后,物质发生变化生成新物质,但组成物质的元素种类不变,质量不变;b化学反应前后,分子本身发生变化,而分子的数目虽然有的改变,但原子的种类,数目不变。该定律反映出化学反应中的一些等量关系,是解化学试题的思路之一。利用化学反应前后某些量之间的等量关系,推理得出正确答案的方法称为守恒法。仔细挖题目中隐含的等量关系是守恒法解题的关键。下面分类进行讨论: (1)质量守恒法 ①发宁前后反应物与生成物质量守恒 ②溶液混合或稀释前后,溶质总质量守恒 ③化学反应中某些元素的质量守恒 (2)电荷守恒法 溶液中阴、阳离子个数不一定相等,但正负电荷总数相等。 (3)比例守恒法 利用试题中潜在的某些量之间的比例恒定不变的原理来解题的一种方法。
5. 假设量法 在所给题目中缺少实例,无数据,仅有字母或仅有比值,在解答该类题设未知数之前,先假设一个题目中缺少的关键量为假设量,即一个已知量,补充解题的条件。然后,此假设量可参与整个化学计算,使计算过程简单,清晰。但该假设的已知量只帮助解题,不会影响最终结果,这种解题方法叫假设量法。具体有两种类型: 假设用具体的物质代替题目中抽象或不定的物质来解题。 ②假设一具体数据代替题目中未知数据来解题。 a. 题目中给出化学反应前后某两种物质的等量关系(已知条件),求混合物中各组分间的质量比—找等量设为假设量。 b. 题目中给出某种物质的质量分数(已知条件),求另一种物质的质量分数—找条件中给出的质量分数所对应的物质质量为假设量
要明确解题思路解题时的一般思路: (1)先找出题中涉及的化学反应,并正确书写化学方程式。 (2)找出题中所提供的数据与化学方程式中各物质的直接或间接关系。 (3)确定哪些数据能直接代入化学方程式。如果所给数据与化学方程式中各物质的关系仅仅是间接关系,那必须分析清楚该数据是通过什么“中介”与各物质产生联系的,然后再列出相应的比例式。
根据化学方程式计算的步骤具体的计算步骤如下: (1)设未知量,求什么设什么。 (2)正确完整地写出相应的化学方程式。 (3)根据化学方程式写出各物质的相对分子(或原子)质量总和,标在相应的化学式下面。把题中的已知条件和待求未知址写在相应物质的相对分子(或原子) 质量总和的下面。 (4)列比例式。 (5)求解。 (6)简明地写出答案。
应注意的问题: (1)解题时首先要认真审题、理清思路、确定解题方法、严格按解题步骤求解。 (2)化学方程式所表示的反应物、生成物的质量关系是进行化学计算的基础,在化学方程式中各物质的化学式一定要书写正确,一定要配平化学方程式或关系式中某元素原子的数目一定要相等,相对分子质量的计算一定要准确。 (3)化学方程式所表明的各物质均指纯净物,参加计算的各物质的质量也必须是纯净物的质量。如果求纯净物的质量需进行换算,换算方法:纯净物的质量= 物质总质量×该物质的质量分数(即纯度)。 (4)对题目中所给的“适最”“足量”“过量”“恰好反应”“完全反应”“充分反应”等词语,要认真对待,正确理解一般来说:“适量”—两种(或多种)反应物之间按一定量比恰好反应。 “足量”—一种反应物完全反应,无剩余;另一种反应物可能完全反应,也可能过量。 “过量”—完全反应后,有一种(或多种)反应物剩余。 “恰好反应”和“完全反应”—完全反应,反应物无剩余。 “充分反应”和“反应完全”—同“足量"。 (5)用化学方程式计算时解题格式要规范。
利用化学方程式计算的几种类型: (1)已知某反应物或生成物的质量,求另一种反应物或生成物的质量。 (2)有关含杂质的物质质量间的计算。 (3)根据化学方程式进行计算的含有体积、密度与质量间换算的有关计算。 (4)关于过量问题的计算。 (5)多步反应的计算。 (6)其他类型的计算。
计算时常见的错误: (1)不认真审题,答非所问; (2)元素符号或化学式写错; (3)化学方程式没有配平; (4)相对分子质量计算错误; (5)没有统一单位; (6)把不纯物质当成纯净物质计算。
化学方程式计算中的几个误区: (1)化学方程式不正确就计算,这是最严重的问题。 (2)把含杂质的质量直接应用在化学方程式计算中,或把体积直接代入化学方程式。 (4)解题格式不规范,设的未知缺与求的量不同,相对分子质量计算错误, (5)计算不准确,不按题目要求写化学方程式(方程式应用不当)。 (6)体积、质量、密度之间的关系问题及单位问题弄错等。
化学方程式计算中的“三个三”: 在解题时要把握好“三个要领”、抓住“三个关键”、注意“三个事项”,即: 三个要领:(1)步骤要完整;(2)格式要规范; (3)结果要准确。 三个关键:(1)准确书写化学式;(2)化学方程式要配平;(3)计算质量比要准确。 三个事项:(1)单位统一;(2)用纯量进行计算; (3)若是体积要换算成质量。
化学反应方程式的配平
化学方程式的配平: 根据质量守恒定律,反应前后原子的种类和数目不变,在反应物和生成物的化学式前配上适当的化学计址数,使各种元素的原子个数在反应前后相等。
配平常用方法:
(1)最小公倍数法 ①找出化学方程式左、右两边各出现一次,且原子个数既不相等又相对较多的元素,求出最小公倍数。 ②用最小公倍数分别除以含有该元素的化学式中该元素的原子个数,其商就是化学式前的化学计量数。 ③由已有的化学计量数,确定其他化学式的化学计量数。如配平:P+O2点燃P2O5,反应前有1个氧分子(即2个氧原子),反应后有5个氧原子,最小公倍数为2× 5=10,O2的化学计量数为10/2=5,P2O5的化学计量数为10/5=2,那么P的化学计量数为4,把短线改为等号:4P+5O2点燃2P2O5。
(2)观察法: 如配平:CO+Fe2O3高温Fe+CO2,观察发现此反应的1个特点是1个CO分子结合1个氧原子生成1个CO2分子,而Fe2O3中提供了3个氧原子,需要与3个CO分子结合生成3个CO2分子,因此CO,CO2前均配上化学计量数3,Fe的化学计量数为2,把短线改为等号:3CO+Fe2O3高温2Fe+3CO2。
(3)奇数配偶法 配平方法的要点:找出化学方程式两边出现次数最多而且在化学式中原子个数总是一奇一偶的元素,在原子个数是奇数的化学式前配上最小的偶数2,使原子个数由奇数变为偶数并加以配平,若2配不平,再换成4。如配平:FeS2+O2高温Fe2O3+SO2。 氧元素是该化学方程式中出现次数最多的元素, Fe2O3中的氧原子个数为奇数(3个),先在Fe2O3前配化学计量数2,接着在FeS2前面配上化学计量数4,使两边的铁原子个数相等。4FeS2+O2高温2Fe2O3+SO2;再在SO2前面配上化学计战数8,使两边S原子个数相等,4FeS2+O2高温2Fe2O3+8SO2;那么生成物各物质前的化学计量数都已确定,氧原子个数也确定,一共22 个,所以在O2前面必须加上化学计量数11才能使化学方程式配平,最后将短线改成等号,即4FeS2+11O2高温2Fe2O3+8SO2。
(4)定一法 定一法又叫原子守恒法,它适用于配平较复杂的化学方程式,其配平步骤为: ①将式中最复杂的化学式的化学计量数定为1,作为配平起点; ②根据原子个数守恒确定其他物质的化学计量数 (可为分数); ③若配平后化学计量数出现分数,则在式子两边同乘其分母数,使化学计量数之比变成最简整数比。例如:配平CH3OH+O2点燃CO2+H2O。
(5)待定系数法 C2H2+O2点燃CO2+H2O 设化学式前的化学计量数分别为a,b,c,d, aC2H2+bO2==cCO2+H2O. 根据质量守恒定律有: 碳原子数:2a=c 氢原子数:2a=2d 氧原子数:2b=2c+d 解得a:b:c:d==2:5:4:2 化学方程式为2C2H2+5O2点燃4CO2+2H2O
配平步骤: a.所给化学方程式中,化学式CH3OH最复杂,将其化学计量数定为1,作为配平起点; b.通过观察,根据碳原子守恒,在CO2前配上化学计量数1,根据氢原子守恒,在H2O前配上化学计量数2,故生成物中含有氧原子数为1×2+2×1=4,而反应物CH3OH中有一个氧原子,故O2前化学计量数为(4一1)/3 =3/2 c.通分化整,将式子两边化学式前的化学计量数都同乘2,去掉O2前化学计量数的分母,化学方程式即配平。 配平结果:2CH3OH+3O2点燃2CO2+4H2O
化学物质
我们周围的空气
空气的成分
空气的成分: 氧气,二氧化碳,氢气,氮气,稀有气体;按体积分:N2占78%,O2占21%,稀有气体占0.94%,二氧化碳占0.03%,其他气体和杂质占0.03%。
易错点: 空气中各成分的含量在一定时间和一定范围内基本恒定,但随着人类活动的延续,气体的排放,空气的成分也在不停地变化,因此不能认为空气的成分是一成不变的。
空气的污染和防治
空气污染: 即空气中含有一种或多种污染物,其存在的量、性质及时间会伤害到人类、植物及动物的生命,损害财物、或干扰舒适的生活环境,如臭味的存在。换言之,只要是某一种物质其存在的量,性质及时间足够对人类或其他生物、财物产生影响者,我们就可以称其为空气污染物;而其存在造成之现象,就是空气污染。换言之,某些物质在空气中不正常的增量就产生空气污染的情形。
空气污染治理:
空气质量日报: 空气质量日报的主要内容:空气污染指数,首要污染物,空气质量级别,空气质量状况。 计入空气污染指数的项目:二氧化硫,一氧化碳,二氧化氮,可吸入颗粒物,臭氧等。 空气质量级别:
PM2.5 (1)什么是PM2.5:PM2.5是指大气中小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。它的直径还不到人的头发丝粗细的1/20。虽然PM2.5只是地球大气成分中含量很少的组分,但对空气质量和能见度等有重要影响。 (2)PM2.5的性状:与较粗的大气颗粒物相比,PM2.5粒径小,富含大量的有毒,有害物质且能在大气中停留时间长,输送距离远,因而对人体健康和大气环境质量的影响更大。 (3)PM2.5的来源:主要来源是日常发电,工业生产,汽车尾气排放等过程中经过燃烧而排放的残留物,大多含有重金属的等有毒物质。一般而言,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,2.5微米以下的细颗粒物(PM2.5)则主要来自化石燃料的燃烧(机动车尾气,燃烧)、挥发性有机物等。 (4)2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标。
室内空气污染: 指由于各种原因导致的室内空气中有害物质超标.进而影响人体健康的室内环境污染。有害物质包括甲醛、苯、氨、放射性物质等。
氧气的性质
定义: 氧气,空气主要组分之一,比空气重,标准状况(0℃和大气压强101325帕)下密度为1.429克/升。无色、无臭、无味。在水中溶解度很小。压强为101kPa时,氧气在约-183摄氏度时变为淡蓝色液体,在约-218摄氏度时变成雪花状的淡蓝色固体。
氧气的性质:
易错点: (1)误认为氧气具有可燃性,可以做燃料 氧气可以帮助可燃物燃烧,具有助燃性,它本身不能燃烧,不能做可燃物。 (2)误认为氧气的化学性质非常活泼,能与所有物质发生反应 氧气是一种化学性质非常活泼的气体,在一定条件下能与许多物质发生化学反应,但不是与所有物质都能发生化学反应。 (3)误认为燃烧都需要氧气 燃烧有广义和狭义之分,通常所说的燃烧是指可燃物与氧气发生的一种发光,放热的剧烈的氧化反应。燃烧的条件之一是需要氧气。但有一些燃烧不需要氧气,如镁在二氧化碳中也能燃烧。 (4)误认为物质与氧气的反应叫氧化反应 氧化反应是物质与氧发生的反应,其中包括物质与氧气中的氧元素发生的反应,也包括物质与其他含氧物质中的氧元素发生的反应。如氢气与氧气反应生成水是氧化反应,氢气与氧化铜反应生成铜和水也是氧化反应。 (5)误认为氧气与液氧性质不行 物质的性质包括物理性质和化学性质,氧气与液氧物理性质不同,但化学性质是相同的,因为它们二者的分子构成相同,都是由氧分子构成的。 (6)误认为含氧的物质都能制取氧气。 制取氧气需要含氧的物质,但不是所有的含氧物质都能用来制取氧气。
氧气的用途
用途作用: 1. 冶炼工艺 在炼钢过程中吹以高纯度氧气,氧便和碳及磷、硫、硅等起氧化反应,这不但降低了钢的含碳量,还有利于清除磷、硫、硅等杂质。而且氧化过程中产生的热量足以维持炼钢过程所需的温度,因此,吹氧不但缩短了冶炼时间,同时提高了钢的质量。高炉炼铁时,提高鼓风中的氧浓度可以降焦比,提高产量。在有色金属冶炼中,采用富氧也可以缩短冶炼时间提高产量。 2. 化学工业 在生产合成氨时,氧气主要用于原料气的氧化,以强化工艺过程,提高化肥产量。再例如,重油的高温裂化,以及煤粉的气化等。 3. 国防工业 液氧是现代火箭最好的助燃剂,在超音速飞机中也需要液氧作氧化剂,可燃物质浸渍液氧后具有强烈的爆炸性,可制作液氧炸药。 4. 医疗保健 供给呼吸:用于缺氧、低氧或无氧环境,例如:潜水作业、登山运动、高空飞行、宇宙航行、医疗抢救等时。 5. 其它方面 如:它本身作为助燃剂与乙炔、丙烷等可燃气体配合使用,达到焊割金属的作用,各行各业中,特别是机械企业里用途很广,作为切割之用也很方便,是首选的一种切割方法。
过度吸氧负作用: 早在19世纪中叶,英国科学家保尔·伯特首先发现,如果让动物呼吸纯氧会引起中毒,人类也同样。氧气瓶氧气瓶人如果在大于0.05MPa(半个大气压)的纯氧环境中,对所有的细胞都有毒害作用,吸入时间过长,就可能发生“氧中毒”。肺部毛细管屏障被破坏,导致肺水肿、肺淤血和出血,严重影响呼吸功能,进而使各脏器缺氧而发生损害。在0.1MPa(1个大气压)的纯氧环境中,人只能存活24小时,就会发生肺炎,最终导致呼吸衰竭、窒息而死。人在0.2MPa(2个大气压)高压纯氧环境中,最多可停留1.5小时~2小时,超过了会引起脑中毒,生命节奏紊乱,精神错乱,记忆丧失。如加入0.3MPa(3个大气压)甚至更高的氧,人会在数分钟内发生脑细胞变性坏死,抽搐昏迷,导致死亡。 此外,过量吸氧还会促进生命衰老。进入人体的氧与细胞中的氧化酶发生反应,可生成过氧化氢,进而变成脂褐素。这种脂褐素是加速细胞衰老的有害物质,它堆积在心肌,使心肌细胞老化,心功能减退;堆积在血管壁上,造成血管老化和硬化;堆积在肝脏,削弱肝功能;堆积在大脑,引起智力下降,记忆力衰退,人变得痴呆;堆积在皮肤上,形成老年斑。 缺氧和富氧对人体的影响: 氧气浓度(%体积)---征兆(大气压力下) 100%---致命/6分钟; 50%---致命/4-5分钟经治疗可痊愈 >23.5%---富氧,有强烈爆炸危险 20.9%---氧气浓度正常 19.5%---氧气最小允许浓度 15-19%---降低工作效率,并可导致头部、肺部和循环系统问题 10-12%---呼吸急促,判断力丧失,嘴唇发紫 8-10%---智力丧失,昏厥,无意识,脸色苍白,嘴唇发紫,恶心呕吐 6-8%---8分钟; 4-6%---40秒内抽搐,呼吸停止,死亡
氧气的工业制法
工业制氧: 实验室中常用过氧化氢或高锰酸钾分解制取氧气的方法,具有反应快、操作简便、便于收集等特点,但成本高,无法大量生产,只能用于实验室中。工业生产则需考虑原料是否易得、价格是否便宜、成本是否低廉、能否大量生产以及对环境的影响等。 空气中约含21%的氧气,这是制取氧气的廉价、易得的原料。
工业制氧的方法: 1、空气冷冻分离法 空气中的主要成分是氧气和氮气。利用氧气和氮气的沸点不同,从空气中制备氧气称空气分离法。首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质)、然后进行压缩、冷却,使之成为液态空气。然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氧气装入高压钢瓶贮存,或通过管道直接输送到工厂、车间使用。使用这种方法生产氧气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氧机以来,这种制氧方法一直得到最广泛的应用。 2、分子筛制氧法(吸附法) 利用氮分子大于氧分子的特性,使用特制的分子筛把空气中的氧离分出来。首先,用压缩机迫使干燥的空气通过分子筛进入抽成真空的吸附器中,空气中的氮分子即被分子筛所吸附,氧气进入吸附器内,当吸附器内氧气达到一定量(压力达到一定程度)时,即可打开出氧阀门放出氧气。经过一段时间,分子筛吸附的氮逐渐增多,吸附能力减弱,产出的氧气纯度下降,需要用真空泵抽出吸附在分子筛上面的氮,然后重复上述过程。这种制取氧的方法亦称吸附法.利用吸附法制氧的小型制氧机已经开发出来,便于家庭使用。
自然界中的氧循环
氧循环: 动植物的呼吸作用及人类活动中的燃烧都需要消耗氧气,产生二氧化碳。但植物的光合作用却大量吸收二氧化碳,释放氧气,如此构成了生物圈的氧循环(氧循环和碳循环是相互联系的)。
氧气循环示意图: 工业燃烧、动植物的呼吸消耗空气中的氧气 通过植物的光合作用产生氧气
自然界的水
水的性质和用途
水(化学式:H2O) 是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水,包括天然水(河流、湖泊、大气水、海水、地下水等),人工制水(通过化学反应使氢氧原子结合得到水)。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。
水的物理性质和化学性质:
1.水的物理性质:通常情况下,水是无色,无味的透明液体,4℃时水的密度是1g/cm³,在标况下,水的沸点是100℃,水的凝固点是0℃。水结冰时体积膨胀,所以冰的密度比水小,能浮在水面上。
2.水的化学性质: (1)在通电条件下能分解:2H2O通电2H2↑+O2↑ (2)与某些非金属氧化物反应生成酸 SO2+H2O==H2SO3 SO3+H2O==H2SO4 CO2+H2O==H2CO3 (3)与某些金属氧化物反应生成碱 CaO+H2O==Ca(OH)2 H2O+Na2O==2NaOH H2O+K2O==2KOH (4)与某些非金属单质反应 H2O(g)+C高温H2+CO (5)与活泼的金属反应 2Na+2H2O=2NaOH+H2↑ 2K+2H2O=2KOH+H2↑ (6)植物以水和二氧化碳为原料进行光合作用 CO2+H2O 叶绿素+光照 有机物+O2 (7)水能参与金属的锈蚀反应,如铁生锈,铜生锈的过程都需要氧气。
水的用途: (1)生活用水:洗脸、刷牙、洗澡、做饭等 (2)农业用水:灌溉庄稼、稀释农药等 (3)工业用水:冷却、洗涤、制造、加工等 (4)动植物的生命活动离不开水,成人每天平均需要补充2.5升左右的水。 (5)在实验室:①溶解物质配成溶液(水为常见的容积)②洗涤仪器③用作试剂④用排水法收集气体。
易错点: 天然水一般不是纯水,蒸馏水一般为纯净的水。海水,江水,地下水,池塘中的水都是溶解了矿物质的溶液,自来水也不是纯水。
自然界的水循环
定义: 地球表面各种形式的水体是不断相互转化的,水以气态、液态、固态的形式在陆地、海洋和大气间不断循环的过程就是水循环。形成水循环的内因是水在通常环境条件下气态、液态、固态易于转化的特性,外因是太阳辐射和重力作用,为水循环提供了水的物理状态变化和运动能量。
水的循环示意图:
水循环意义:
水资源状况
水资源: 地球上的水资源,从广义来说是指水圈内水量的总体。包括经人类控制并直接可供灌溉、发电、给水、航运、养殖等用途的地表水和地下水,以及江河、湖泊、井、泉、潮汐、港湾和养殖水域等。水资源是发展国民经济不可缺少的重要自然资源。在世界许多地方,对水的需求已经超过水资源所能负荷的程度,同时有许多地区也濒临水资源利用之不平衡。
世界水资源状况: ①水在地球上分布很广,地球上的海洋水、湖泊水、河流水、地下水、大气水和生物水等各种形态的水总储量约为1.39×1018m3。地球表面的70.8%被水覆盖。其中海洋水约占全球总储水址的96.5%。 ②地球上的总储水量虽然很大,但淡水很少。淡水只约占全球总储水量的2.53%,其中大部分还分布在两极和高山的冰雪及永久冻土层中,难以利用,可以利用的淡水址还不到总储水量的1%. ③海洋不但是水资源的宝库,而且蕴藏着丰富的化学资源。海水中含有80多种化学元素,随着陆地资源的消耗,海洋资源的开发也显得日益重要。
我国的水资源状况: 我国水资源总址约为2.8×1012m3,居世界第六位,但人均水量只有2300m3,约为世界人均水量的四分之一,许多地区已出现因水资源短缺影响人民生活、制约经济发展的局面,水资源分布也不均匀。
水的净化
定义: 清除水中不好的或不需要的杂质,使水达到纯净的程度。
四种净化水的方法,原理,作用:
水净化的方法: 吸附,沉淀,过滤,蒸馏,杀菌 吸附:常用明矾和活性炭,明矾溶于水后形成胶状物吸附水中的悬浮物,活性炭不仅可以吸附水中的悬浮物,还可以吸附在水中有异味的物质和色素 沉淀:水中悬浮物别吸附后形成密度大的颗粒,从而使杂质沉淀 过滤:除去水中不溶性的杂质 蒸馏:除去可溶性杂质的方法 杀菌:常用杀毒剂:漂白粉,氯气以及新型消毒剂二氧化氯等 吸附、沉淀、过滤和蒸馏中单一操作净化程度较高的是蒸馏。综合运用时,按吸附→沉淀→过滤→蒸馏的顺序操作净化效果更好
加絮凝剂(明矾)与活性炭净水的比较:
自来水厂净化水的过程图及步骤 1、净化过程图见图 2、自来水净化步骤 ①从水库中取水。 ②加絮凝剂(主要是明矾),使悬浮的小颗粒状杂质被吸附凝聚。 ③在反应沉淀池中沉降分离,使水澄清 ④将沉淀池中流出的较澄清的水通入过滤池中,进一步除去不溶性杂质。 ⑤再将水引人活性炭吸附池中,除去水中的臭味和残留的颗粒较小的不溶性杂质。 ⑥细菌消毒(常用通入氯气的办法)。它是一个化学变化过程,因为除去病菌的过程.就是把病菌变成其他物质的过程。 ⑦杀菌后的水就是洁净、可以饮用的自来水,通过配水泵供给用户,但水中仍然含有可以溶于水的一些杂质,所以还是混合物。
节约用水
定义: 是指通过行政、技术、经济等管理手段加强用水管理,调整用水结构,改进用水方式,科学、合理、有计划、有重点的用水,提高水的利用率,避免水资源的浪费。特别要在全民中做好宣传,利用世界水日等节水活动,教育每个人都在日常工作或生活中科学用水,自觉节水,达到节约用水人人有责。
节水用水从我做起: 1.洗菜、淘米的水用来浇花、拖地、冲厕所 2.使用节水龙头, 3.水龙头坏了立即进行修理 4.用喷灌、滴灌方法给农作物浇水 5.沐浴擦香皂是暂时关上喷头
节水徽记: A图是2000年以前酬锹勺节水徽记。 B图为新千年“国家节水标志”。“标志”由水滴、人手和地球组成。
硬水和软水
定义: 硬水是含有较多可溶性钙、镁化合物的水。 软水是不含或含较少可溶性钙、镁化合物的水。
水的硬度: 水的硬度常用一种规定的标准来衡量,这个标准是:把1L水里含10mgCaO(或相当于10mgCaO)称为1度。
硬水和软水的检验: (1)用肥皂水来检验硬水和软水,把肥皂水滴在水里搅拌,产生泡沫多的是软水,产生泡沫少或不产生泡沫的是硬水 (2)用加热煮沸的方法检验硬水和软水。水加热煮沸时,有较多沉淀的是硬水,不产生沉淀或者产生沉淀较少的是软水。
硬水的软化: 就是设法除去硬水中的钙、镁化合物。 硬水软化的方法:生活中常用煮沸法,工业上常用离子交换法和药剂软化法,实验室常用蒸馏法,蒸馏法是净化程度较高的水,蒸馏时应注意以下几点: ①蒸馏瓶中的液体不能超过其容积的2/3. ②加热时,应在烧瓶中放几粒沸石(或碎瓷片)。 ③装置气密性良好 ④水银温度计的水银球应放在蒸馏烧瓶的支管口附近。
使用硬水造成的危害:饮用水中含有微量的钙、镁成分,对人体健康是有益的。但是,水中含太多的钙、镁成分,对生活和生产都有危害。①用硬水洗涤,不仅浪费肥皂,而且会在织物上积有肥皂跟钙、镁反应后生成的沉淀,不容易洗干净,还会使纤维变脆、易断。②硬水有苦涩味,长期饮用硬水会使人的胃肠功能紊乱,出现不同程度的腹胀、腹泻和腹痛。 ③锅炉用水硬度太大,会产生水垢,这会大大降低锅炉的导热能力,造成燃料的浪费。另外,当水垢爆裂脱落时,会造成炉壁局部受热不均,易引起锅炉爆炸。
离子交换法: 离子交换法是工业生产软化水的重要方法之一。离子交换法的原理:离子交换树脂是一种聚合物,带有相应的功能基团(一般情况下,常规的钠离子交换树脂带有大量的钠离子),当含钙、镁离子较高的硬水经过离子交换树脂时,离子交换树脂即可以释放出钠离子,其功能基团与钙、镁离子结合。这样水中的钙、镁离子含量下降,水的硬度降低,硬水即可被软化为软水。离子交换法的流程为:工作(即交换)、反洗、再生、清洗四个过程。
水的污染与防治
水体污染的定义: 大量的污染物质排入水体,超过水体的自净能力使水质恶化,水体及其周围的生态平衡遭到破坏,对人类健康、生活和生产活动等造成损失和威胁的情况。
水体污染来源: a.工业污染:座水、废渣、废气《工业“三反”》。 b.农业污染:化肥、农药的不合理使川。 c.生活污染:含磷洗涤剂的大量使用、生活污水的任意排放等。
防治措施: a.工业上:通过应用新技术、新工艺减少污染物的产生,同时对污染的水体作处理使之符合排放标准。 b.农业上:提们使川农家肥,合理使用化肥和农药。c.生活污水也应逐步实现欲中处理和排放。
水体的自净能力:广义的水体自净是指在物理、化学和生物作用下.受污染的水体逐渐自然净化,水质复原的过程。,狭义的水体自净是指水体叶I微生物氧化分解有机污染物而使水体净化的过程。水体自净大致分为三类,即物理净化、化学净化和生物净化。它们同时发生,相互影响,共同作用。(1)物理净化。物理净化是指污染物质由于稀释、扩散、混合和沉淀等过程而浓度降低。污水进入水体后,大颗粒的不溶性固体在水流较弱的地方逐渐沉入水底,形成污泥。悬浮体、胶体和可溶性污染物因混合、稀释,浓度逐渐降低。 (2)化学净化。化学净化是指污染物由于氧化还原、酸碱反应、分解、化合和吸附凝聚等化学或物理作用而浓度降低。流动的水体从水面上大气中溶人氧气,使污染物中铁、锰等重金属离子氧化,生成难溶性物质析出沉降。某些元素在一定酸性环境中,形成易溶性化合物,随水漂移而稀释;在中性或碱性条件下,某些元素形成难溶化合物而沉降。天然水中的胶体,吸附和凝聚水中悬浮物质微粒,随水流移动或逐渐沉降。 (3)生物净化,又称生物化学净化。是指生物活动尤其是微生物对有机物的氧化分解使污染物质的浓度降低。
城市污水及处理: (1)城市污水城市污水包括生活污水、工业废水和径流污水等,由城市排水管网汇集并输送到污水处理厂进行处理。城市污水的污染,一般经历三个历史时期:病源污染期、总体污染期和新污染期。在病源污染期,城市污水主要是生活污水。由于污水中含有病菌和病毒,污水排入水体后往往会传染疾病。在总体污染期,随着工业的发展和人口的集中,城市污水量及所含的污染物种类不断增加。污水排入水体后,造成水体中悬浮物数量和生化需氧量越来越大,水体缺氧,水生生物灭绝。在新污染期,由于工业的高度发展,污水所含的污染物种类更加复杂。工业废水日益成为城市污水处理中的主要对象。(2)城市污水处理城市污水处理分为三个级别.分别称为污水一级处理、污水二级处理、污水三级处理。一级处理应用物理处理方法,即用格栅、沉砂池、初沉池、活性污泥池、二次沉淀池等构筑物,去除污水中不溶解的污染物和寄生虫卵。二级处理应用生物处理方法,即主要通过微生物的代谢作用进行物质转化的过程,将污水巾各种复杂的有机物降解为简单的物质。生物处理对污水水质、水温、供氧量等都有一定的要求。三级处理是用生物化学(硝化一反硝化)法、碱化吹脱法或离子交换法除氮,用化学沉淀法除磷,用臭氧氧化法、活性炭法或超过滤法除去难降解有机物,用反渗透法除去盐类,用氯化法消毒等过程中的一种或几种组成的污水处理工艺。
金属和金属材料
金属的物理性质和用途
概述: 金属是一种具有光泽(即对可见光强烈反射)、富有延展性、容易导电、导热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。在自然界中,绝大多数金属以化合态存在,少数金属例如金、铂、银、铋以游离态存在。金属矿物多数是氧化物及硫化物。其他存在形式有氯化物、硫酸盐、碳酸盐及硅酸盐。金属之间的连结是金属键,因此随意更换位置都可再重新建立连结,这也是金属伸展性良好的原因。金属元素在化合物中通常只显正价。
金属物理性质的共性: 大多数金属在常温下是固体,具有金属光泽,是电和热的良导体,具有良好的延展性,密度较大,熔沸点较高。
金属物理性质的特性: 不同的金属有其各自的特性。如铁、铝等大多数金属都呈银白色,但铜呈红色,金呈黄色;常温下,铁、铝、铜等大多数金属都是固体,但汞是液体;不同金属的导电性、导热性、密度、熔点、硬度等物理性质差别也较大,见下表。
用途: 钛和钛的合金:可用于制造喷气发动机,轮船外壳,反应器和电信器材。 锌:锌镀在铁的表面,以防止铁被腐蚀;锌还常用于电镀、制造铜合金和干电池。 铜:制造电线、电缆和各种电器。 铝:来冶炼高熔点金属;导电性仅次于银和铜,常用于制造电线和电缆。
物质的性质和用途的关系: ①物质的性质在很大程度上决定了物质的用途,但实际运用时,还需要考虑价格、资源、是否美观、使用是否便利,以及废料是否易于回收和对环境的影响等多种因素。 ②应用举例 a.日常生活中菜刀、镰刀、锤子等用铁制而不用铅制,这是因为铁的硬度比铅大,并且铅对人体有害。 b.虽然银的导电性比铜好,但由于银的价格比铜高得多,所以电线一般用铜制而不用银制。 c.灯泡里的灯丝用钨制而不用锡制,这是因为钨是熔点最高的金属,高温时钨丝不易熔化;而锡的熔点最低 (只有232℃),如果用锡制灯丝,只要一开灯,灯丝就会断开,灯泡不能发光。 d.铁制水龙头要镀铬,这是因为镀铬既美观,又耐腐蚀,可延长水龙头的使用寿命。 e.在日常生活中我们还经常用到其他金属,如温度计中的液态金属汞、干电池的锌皮、热水瓶内胆上镀的金属银等。
金属的化学性质
金属的化学性质: 常见金属能与氧气反应,也能与盐酸,硫酸及盐溶液反应。
常见金属的化学性质:
1.金属和氧气的反应
2.金属与酸的反应
3.金属与盐的反应 将锌片、铁丝、铜丝三种金属分别放入硫酸铜溶液、硝酸银溶液、氯化钠溶液中,观察现象
易错点: 一、(1)一般在金属活动性顺序表中排在氢前面的金属(也叫活泼金属)能置换出酸中的氢;排在氢后面的金属则不能,如铜、银与盐酸、稀硫酸都不反应。 (2)浓硫酸和硝酸与金属反应不生成氢气,因为它们有很强的氧化性,与金属反应不生成氢气。 (3)在金属活动性顺序表中排在最前面的金属如K、 Na活泼性太强,放入酸溶液中首先跟酸发生置换反应,过M的金属会继续跟水发生剧烈的反应。 (4)铁与非氧化性酸反应时,始终生成亚铁盐 (Fe2+)。 (5)金属与酸反应后溶液的质量增大。 二、(1)在金属活动性顺序表中,位于前面的金属可以把位于其后面的金属从它们的盐溶液中置换出来(K,Ca,Na除外)。相隔越远,反应越容易发生。(2)金属与盐溶液的反应,盐必须能溶于水,不溶性的盐与金属不反应,如AgCl难溶于水,Fe和AgCl不反应。 (3)不能用活泼的金属K,Ca,Na,与盐溶液反应,因为K,Ca,Na。会先与H2O发生置换反应生成碱和氢气。
金属与酸的反应不一定属于置换反应: 置换反应是指一种单质和一种化合物反应生成另一种单质和另一种化合物的反应。一般情况下,较活泼的金属跟酸发生的化学反应属于置换反应。但由于浓硫酸(或硝酸)具有强氧化性,金属与浓硫酸(或硝酸)反应时,生成物相对比较复杂。这类反应不属于置换反应。
铝和锌的抗腐蚀性: 1.铝制品具有很好的抗腐蚀性,是因为铝与空气中的氧气反应表面生成一种致密的氧化铝薄膜,对铝起防护作用。 2.锌与铝的抗腐蚀性相似,也是在金属表面会生成一层致密的氧化锌保护膜。
金属的活性
定义: 金属活动性指金属单质在水溶液中失去电子生成金属阳离子的性质。
常见金属活动性顺序: K、Ca、Na、Mg、Al、Zn、Fe、Sn、Pb、(H)、Cu、Hg、Ag、Pt、Au
金属活动性顺序表的意义 (1)金属的位置越靠前,它的活动性越强 (2)位于氢前面的金属能置换出酸中的氢(强氧化酸除外)。 (3)位于前面的金属能把位于后面的金属从它们的盐溶液中置换出来(K,Ca,Na除外)。 (4)很活泼的金属,如K、Ca、Na与盐溶液反应,先与溶液中的水反应生成碱,碱再与盐溶液反应,没有金属单质生成。如: 2Na+CuSO4+2H2O==Cu(OH)2↓+Na2SO4+H2↑ (5)不能用金属活动性顺序去说明非水溶液中的置换反应,如氢气在加热条件下置换氧化铁中的铁: Fe2O3+3H2加热2Fe+3H2O
金属原子与金属离子得失电子能力的比较
金属原子
金属离子
金属活动性顺序表的应用
(1)判断某些置换反应能否发生 a.判断金属与酸能否反应: 条件: ①金属必须排在氢前面 ②酸一般指盐酸或稀硫酸 b.判断金属与盐溶液能否反应: 条件: ①单质必须排在盐中金属的前面 ②盐必须可溶于水 ③金属不包含K、Ca、Na
(2)根据金属与盐溶液的反应判断滤液、滤渣的成分。如向CuSO4,AgNO3混合液中加铁粉,反应后过滤,判断滤液和滤渣成分。铁与CuSO4和AgNO3溶液反应有先后顺序,如果铁足量,先将AgNO3中的Ag完全置换后再置换CuSO4中的Cu,那么溶液中只有FeSO4;如果铁的量不足,应按照“先后原则”分别讨论滤液和滤渣的成分。
(3)根据金属活动性顺序表判断金属与酸反应的速率或根据反应速率判断金属的活动性顺序。如镁、锌、铁三种金属与同浓度的稀H2SO4反应产生氢气的速率:Mg>Zn>Fe,则可判断金属活动性Mg>Zn>Fe,
(4)利用金属活动性顺序表研究金属冶炼的历史。金属活动性越弱,从其矿物中还原出金属单质越容易; 金属活动性越强,从其矿物中还原出金属单质越难。所以越活泼的金属越不易冶炼,难于冶炼的金属开发利用的时间就越迟。
(5)应用举例 a.湿法炼铜我国劳动人民在宋代就掌握了湿法炼铜技术,即将铁放入硫酸铜溶液中置换出铜: Fe+CuSO4=FeSO4+Cu。 b.从洗相废液中回收银洗相废掖中含有大量的硝酸银,可用铁置换回收: Fe+2AgNO3==Fe(NO3)2+2Ag。 c.处理工业废水中的铜、汞离子工业废水中常含铜、汞等金属离子,这些离子对生物有很大的危害,在排放前必须进行处理,可用铁置换回收:Fe+CuSO4==FeSO4+Cu d.实验室选择金属与酸反应制取氢气在金属活动性顺序表中,H之前的金属都能跟稀 H2SO4、稀HCl反应产生氢气,但Zn之前的金属与酸反应太快。不便操作;Zn之后的金属与酸反应太慢,花费时间太长,从经济效益和反应速率多方而考虑,Zn是最合适的金属。
金属与混合溶液的反应
(1)将一种金属单质放入几种金属的盐溶液的混合液中时,其中排在金属活动性顺序表巾最靠后的金属最先被置换出来,然后再依次置换出稍靠后的金属。简记为“在金属活动性顺序中,距离远,先反应”。如将金属Zn。放入FeSO4和CuSO4的混合溶液中,Zn先与CuSO4发生置换反应,与CuSO4反应完后再与FeSO4 发生置换反应。根据金属锌的最不同可分为以下几种情况:
(2)将几种不同的金属放入同一种盐溶液中,发生反应的情况与将一种金属放入几种金属的盐溶液中相似,也是在金属活动性顺序表中,距离越远的先反应,然后是距离较远的反应。
金属与酸反应生成氢气图像问题的分析方法:
金属与酸或盐溶液反应前后溶液密度变化的判断方法: 金属与酸的反应和金属与盐溶液的反应均为置换反应,反应后溶液的溶质发生了改变,导致溶液的溶质质量分数、溶液的密度也随之改变。反应前后溶液的密度的变化取决于反应前后溶液中溶质的相对分子质量的相对大小。 (1)反应后溶液密度变小:如Fe+CuSO4== FeSO4+Cu,在该反应中,反应前溶液中的溶质为CuSO4,其相对分子质量为160;反应后溶液中的溶质为FeSO4,其相对分子质量为152,由于152<160,故该反应后溶液密度变小。 (2)反应后溶液密度变大:如Zn+H2SO4== ZnSO4+H2↑,在该反应中,反应前溶液中的溶质为H2SO4,相对分子质量为98;反应后溶液中溶质为ZnSO4,相对分子质童为161,由于161>98。故该反应后溶液密度变大。
真假黄金的鉴别: 黄金是一种具有金黄色光泽的金属、化学性质极不活泼。黄铜的外形与黄金非常相似,所以不法分子常用黄铜(Zn,Cu合金)来冒充黄金。但二者之间的性质有很大差异,可用多种方法鉴别。 方法一:取少量金黄色金属块于试管中,加入少量稀盐酸或稀硫酸,若有气泡产生(Zn+2HCl==ZnCl2+H2),则原试样为黄铜;若没有气泡产生,则原试样为黄金。 方法二:取少量金黄色金属块,用天平称其质量,用量筒和水测出其体积,计算出金属块的密度与黄金的密度对照,若密度相等,则为黄金;若有较大的差异,则为黄铜。 方法三:取少员金黄色金属块在火焰上加热,若金属块表面变黑(2Cu+O22CuO,则原试样为黄铜;若无变化,则为黄金。 方法四:取少讨金黄色金属块于试管中,向试管中加人适量的硫酸铜溶液,若金属块表而出现红色物质且溶液颜色变浅(Zn+CuSO4==ZnSO4+Cu),则原试样为黄铜;若无变化,则原试样为黄金。
金属的冶炼(铁的冶炼)
额……小编还在整理数据……
金属的锈蚀与防护
金属锈蚀: 金属材料受周围介质的作用而损坏,称为金属腐蚀。金属的锈蚀是最常见的腐蚀形态。腐蚀时,在金属的界面上发生了化学或电化学多相反应,使金属转入氧化(离子)状态。这会显著降低金属材料的强度、塑性、韧性等力学性能,破坏金属构件的几何形状,增加零件间的磨损,恶化电学和光学等物理性能,缩短设备的使用寿命,甚至造成火灾、爆炸等灾难性事故。
铁生锈条件的探究
易错点: ①探究铁生锈的条件时采用经煮沸后迅速冷却的蒸馏水,目的是赶走水中溶解的氧气;再加上植物油用来隔绝空气。 ②环境中的某些物质会加快铁的锈蚀,如与酸、食盐溶液等接触的铁制品比钢铁生锈更快。 ③铁生锈的过程。实际上是铁与空气中的氧气、水蒸气等发生化学反应的过程(缓慢氧化)。反应过程相当复杂,最终生成物铁锈是一种混合物。铁锈(主要成分是Fe2O3·H2O)为红色,疏松多孔,不能阻碍内层的铁继续与氧气、水等反应,因此铁制品可以全部锈蚀。 ④许多金属都易生“锈”,但“锈”的结构不同,成分不同。铜在潮湿的空气中也能生“锈”,铜锈即铜绿,其主要成分为碱式碳酸铜[Cu2(OH)2CO3],是铜与水、氧气、二氧化碳共同作用的产物。
金属制品的防锈原理及方法: (1)防锈原理根据铁的锈蚀条件不难推断出防止铁生锈的方法是使铁制品隔绝空气或隔绝水。 (2)防锈方法: ①保持铁制品表面洁净和干燥,如菜刀不用时擦干放置。 ②在钢铁表面覆盖保护膜、如车、船表而涂油漆。 ③在钢铁表而镀一层其他金属,如水龙头表面镀铬、镀锌。 ④用化学方法使钢铁表面形成致密的保护膜,如烤蓝。 ⑤改善金属的结构,如将钢铁制成不锈钢 (3)除锈方法 物理方法:用砂纸打磨,用刀刮。 化学方法:用酸清洗(酸不能过量),发生的反应为:Fe2O3+6HCl==2FeCl3+3H2O或Fe2O3+3H2SO4==Fe2(SO4)3+3H2O。
金属材料
定义: 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。
常见的金属材料包括: 纯金属、合金、金属材料金属间化合物和特种金属材料等。 (注:金属氧化物(如氧化铝)不属于金属材料)
几种重要的金属:
(1) 铁(Fe) 纯铁具有银白色金属光泽,质软,有良好的延展性,是电和热的良导体,密度为7.86g/cm3,属重金属,熔点为1535℃,沸点为2750℃。
(2)铝(Al) 具有银白色金属光泽,密度为2.70g/cm3,熔点为660℃,沸点为2200℃。具有良好的延展性、导电性和一导热性。在空气中,铝表面能形成一层致密的氧化物薄膜,可阻止铝进一步被氧化;铝对浓硝酸等有耐腐蚀性;在高温时还原性很强,可川来冶炼高熔点金属;导电性仅次于银和铜,常用于制造电线和电缆 。
(3)铜(Cu) 具有红色金属光泽,密度为8.92g/cm3,熔点为1083℃,沸点为2595℃。具有良好的延展性、导电性和导热性。铜在干燥的空气中化学性质不活泼,在潮湿的空气中,表面可生成碱式碳酸铜(铜绿);导电性在金属中仅次于银,用于制造电线、电缆和各种电器。
(4)锌(Zn) 具有青白色金属光泽,密度为7.14g/cm3,熔点为419.4℃,沸点为907℃.锌在空气中比较稳定,在表面能形成一层致密的氧化物薄膜,所以常将锌镀在铁的表面,以防止铁被腐蚀;锌还常用于电镀、制造铜合金和干电池。
(5)钛(Ti) 具有银白色金属光泽,密度为4.5g/cm3,熔点为1725℃,沸点为3260℃。具有良好的延展性和耐腐蚀性。钛和钛的合金可用于制造喷气发动机,轮船外壳,反应器和电信器材。
人类使用金属的历史: 人类最早使用的金属制品是青铜器,然后过渡到铁器时代,再后就是铝制品时代。人类使用金属的历史主要与金属的活动性及冶炼技术的难易有关。
金属之最: (])地壳中含量最多的金属元素—铝(Al) (2)人体中含量最高的金属元素—钙(Ca) (3)导电、导热性最好的金属—银(Ag) (4)熔点最高的金属—钨(W) (5)目前世界年产址最高的金属—铁(Fe) (6)硬度最大的金属—铬(Cr) (7)密度最大的金属—饿(Os) (8)密度最小的金属—铿(Li)
金属材料的分类: 金属材料可分为黑色金属材料和有色金属材料。黑色金属材料通常包括铁、铬、锰以及它们的合金,是应用最广泛的金属材料,除黑色金届外其他各种金属称为有色金属。
纯金: 在欧洲和美洲,把纯金叫做“24K","18K”金就是含黄金18份,其余的6份是铜,合为成数,就是七成五。把成数和K数互相折合,可以用下边两个公式:成数÷10×24=K数,K数÷24×10=成数。美国的金元按规定是21.6K,用上面的公式一算,可以知道应该用九成金来铸。普通的金表外壳和金笔尖都是14K,你可以算一算是几成金。
金属的回收和利用
定义: 金属回收是指从废旧金属中分离出来的有用物质经过物理或机械加工成为再生利用的制品。是从回收、拆解、到再生利用的一条产业链。
保护金属资源的途径: (1)回收利用废旧金属; (2)防止金属制品锈蚀; (3)合理地、有计划地开采金属矿物; (4)寻找替代品。
废旧金属的回收利用的优点: (1)废旧金属的回收利用可以节约金属资源和能源。 (2)废旧金属的回收还可以保护环境,减少对环境的污染。
溶液
溶液的定义、组成及特征
溶液的概念: 一种或几种物质分散到另一种物质中,形成均一的,稳定的混合物,叫做溶液
溶液的组成: (1)溶液由溶剂和溶质组成溶质:被溶解的物质溶剂: 溶液质量=溶剂质量+溶质质量 溶液的体积≠溶质的体积+溶剂的体积 (2)溶质可以是固体(氯化钠、硝酸钾等)、液体(酒精、硫酸等)或气体(氯化氢、二氧化碳等),一种溶液中的溶质可以是一种或多种物质。水是最常用的溶剂,汽油、洒精等也可以作为溶剂,如汽油能够溶解油脂,洒精能够溶解碘等。
溶液的特征: 均一性:溶液中各部分的性质都一样; 稳定性:外界条件不变时,溶液长时间放置不会分层,也不会析出固体溶质
对溶液概念的理解: 溶液是一种或儿种物质分散到另一种物质里.形成的均一、稳定的混合物。应从以下几个方面理解: (1)溶液属于混合物; (2)溶液的特征是均一、稳定; (3)溶液中的溶质可以同时有多种; (4)溶液并不一定都是无色的,如CuSO4溶液为蓝色; (5)均一、稳定的液体并不一定郡是溶液,如水; (6)溶液不一定都是液态的,如空气。
溶液与液体 (1)溶液并不仅局限于液态,只要是分散质高度分散(以单个分子、原子或离子状态存在)的体系均称为溶液。如锡、铅的合金焊锡,有色玻璃等称为固态溶液。气态的混合物可称为气态溶液,如空气。我们通常指的溶液是最熟悉的液态溶液,如糖水、盐水等。 (2)液体是指物质的形态之一。如通常状况下水是液体,液体不一定是溶液。 3. 溶液中溶质、溶剂的判断 (1)根据名称。溶液的名称一般为溶质的名称后加溶剂,即溶质在前,溶剂在后。如食盐水中食盐是溶质,水是溶剂,碘酒中碘是溶质,酒精是溶剂。 (2)若是固体或气体与液体相互溶解成为溶液。一般习惯将固体或气体看作溶质,液体看作溶剂。 (3)若是由两种液体组成的溶液,一般习惯上把量最多的看作溶剂,量少的看作溶质。 (4)其他物质溶解于水形成溶液时。无论,水量的多少,水都是溶剂。 (5)一般水溶液指不指明溶剂,如硫酸铜溶液,就是硫酸铜的水溶液,蔗糖溶液就是蔗糖的水溶液,所以未指明溶剂的一般为水。 (6)物质在溶解时发生了化学变化,那么在形成的溶液中,溶质是反应后分散在溶液中的生成物。如 Na2O,SO3分别溶于水后发生化学反应,生成物是 NaOH和H2SO4,因此溶质是NaOH和H2SO4,而不是 Na2O和SO3;将足量锌粒溶于稀硫酸中所得到的溶液中,溶质是硫酸锌(ZnSO4),若将蓝矾(CuSO4·5H2O) 溶于水,溶质是硫酸铜(CuSO4),而不是蓝矾。
饱和溶液、不饱和溶液
饱和溶液和不饱和溶液的概念: ①饱和溶液:在一定温度下,在一定量的溶剂里,不能再溶解某种溶质的溶液, 叫做这种溶质的饱和溶液 ②不饱和溶液:在一定温度下,在一定量的溶剂里,还能再继续溶解某种溶质的溶液, 叫做这种溶质的不饱和溶液
概念的理解: (1)溶液的饱和与不饱和跟温度和溶质的量的多少有关系。因此在谈饱和溶液与不饱和溶液时,一定要强调“在一定温度下”和“一定量的溶剂里”,否则就无意义。 (2)一种溶质的饱和溶液仍然可以溶解其他溶质。如氯化钠的饱和溶液中仍可溶解蔗糖。 (3)有些物质能与水以任意比例互溶,不能形成饱和溶液,如:酒精没有饱和溶液。
判断溶液是否饱和的方法: ①观察法:当溶液底部有剩余溶质存在,且溶质的量不再减少时,表明溶液已饱和。 ②实验法:当溶液底部无剩余溶质存在时,可向该溶液中加入少量该溶质,搅拌后,若能溶解或溶解一部分,表明该溶液不饱和;若不能溶解,则表明该溶液已饱和。
浓溶液,稀溶液与饱和溶液,不饱和溶液的关系: 为粗略地表示溶液中溶质含量的多少,常把溶液分为浓溶液和稀溶液。在一定量的溶液里含溶质的量相对较多的是浓溶液,含溶质的量相对较少的是稀溶液。它们与饱和溶液、不饱和溶液的关系如下图所示: A. 饱和浓溶液B.饱和稀溶液C.不饱和浓溶液D.不饱和稀溶液 (1)溶液的饱和与不饱和与溶液的浓和稀没有必然关系。 (2)饱和溶液不一定是浓溶液,不饱和溶液不一定是稀溶液;浓溶液不一定是饱和溶液,稀溶液不一定是不饱和溶液。 (3)在一定温度下,同种溶剂、同种溶质的饱和溶液要比其不饱和溶液浓度大。
关于溶液的计算
概念: 在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里,该温度下的溶解度。
正确理解溶解度概念的要素: ①条件:在一定温度下,影响固体物质溶解度的内因是溶质和溶剂的性质,而外因就是温度。如果温度改变,则固体物质的溶解度也会改变,因此只有指明温度时,溶解度才有意义。 ②标准:“在100g溶剂里”,需强调和注意的是:此处100g是溶剂的质量,而不是溶液的质量。 ③状态:“达到饱和状态”,溶解度是衡址同一条件下某种物质溶解能力大小的标准,只有达到该条件下溶解的最大值,才可知其溶解度,因此必须要求“达到饱和状态”。 ④单位:溶解度是所溶解的质量,常用单位为克(g)。
概念的理解: ①如果不指明溶剂,通常所说的溶解度是指固体物质在水中的溶解度。 ②溶解度概念中的四个关键点:“一定温度,100g 溶剂、饱和状态、溶解的质量”是同时存在的,只有四个关键点都体现出来了,溶解度的概念和应用才是有意义的,否则没有意义,说法也是不正确的。
溶解度曲线: 在平面直角坐标系里用横坐标表示温度,纵坐标表示溶解度,画出某物质的溶解度随温度变化的曲线,叫这种物质的溶解度曲线。 ①表示意义 a.表示某物质在不同温度下的溶解度和溶解度随温度变化的情况; b.溶解度曲线上的每一个点表示该溶质在某一温度下的溶解度; c.两条曲线的交点表示这两种物质在某一相同温度下具有相同的溶解度; d.曲线下方的点表示溶液是不饱和溶液; e.在溶解度曲线上方靠近曲线的点表示过饱和溶液(一般物质在较高温度下制成饱和溶液,快速地降到室温,溶液中溶解的溶质的质量超过室温的溶解度,但尚未析出晶体时的溶液叫过饱和溶液)。 ②溶解度曲线的变化规律 a.有些固体物质的溶解度受温度影响较大,表现在曲线“坡度”比较“陡”,如KNO3; b.少数固体物质的溶解度受温度的影响很小,表现在曲线“坡度”比较“平”,如NaCl 。 c.极少数固体物质的溶解度随温度的升高而减小,表现在曲线“坡度”下降,如Ca(OH)2 ③应用 a.根据溶解度曲线可以查出某物质在一定温度下的溶解度; b.可以比较不同物质在同一温度下的溶解度大小; c.可以知道某物质的溶解度随温度的变化情况; d.可以选择对混合物进行分离或提纯的方法; e.确定如何制得某温度时某物质的饱和溶液的方法等。
运用溶解度曲线判断混合物分离、提纯的方法: 根据溶解度曲线受温度变化的影响,通过改变温度或蒸发溶剂,使溶质结晶折出,从而达到混合物分离、提纯的目的。如KNO3和NaCl的混合物的分离。 (KNO3,NaCl溶解度曲线如图) (1)温度变化对物质溶解度影响较大,要提纯这类物质。可采用降温结晶法。 具体的步骤为:①配制高温时的饱和溶液,②降温,③过滤,④干燥。如KNO3中混有少量的NaCl,提纯KNO3可用此法。 (2)温度变化对物质溶解度影响较小,要提纯这类物质,可用蒸发溶剂法。 具体步骤为:①溶解,②蒸发溶剂,③趁热过滤,④干燥。如NaCl中混有少量KNO3,要提纯NaCl,可配制溶液,然后蒸发溶剂,NaCl结晶析出,而KNO3在较高温度下,还没有达到饱和,不会结晶,趁热过滤,可得到较纯净的NaCl。
固体溶解度
概念: 气体的溶解度是指在压强为101kPa和一定温度时,气体溶解在3体积水里达到饱和状态时的气体体积。如氮气在压强为101kPa和温度为0℃ 时,1体积水里最多能溶解0.024体积氮气,则在0℃ 时,氮气的溶解度为0.024
影响气体溶解度的因素: ①压强:气体的溶解度随着压强的增大而增大,随若压强的减小而减小。 ②温度:气体的溶解度随着温度的升高而减小,随着温度的降低而增大。
应用气体溶解度的知识来解释的现象: ①夏天打开汽水瓶盖时,压强减小,气体的溶解度减小,会有大量气泡冒出。 ②喝汽水后会打隔,是因为汽水到胃中后,温度升高、气体的溶解度减小。 ③养鱼池中放几个水泵,把水喷向空中,增大与氧气的接触面积,增加水中氧气的溶解量。 ④不能用煮拂后的凉开水养鱼,因为温度升高,水巾溶解的氧气减少,因而凉开水中几乎不含氧气。
气体溶解度
概念: 气体的溶解度是指在压强为101kPa和一定温度时,气体溶解在3体积水里达到饱和状态时的气体体积。如氮气在压强为101kPa和温度为0℃ 时,1体积水里最多能溶解0.024体积氮气,则在0℃ 时,氮气的溶解度为0.024。
影响气体溶解度的因素: ①压强:气体的溶解度随着压强的增大而增大,随若压强的减小而减小。 ②温度:气体的溶解度随着温度的升高而减小,随着温度的降低而增大。
应用气体溶解度的知识来解释的现象: ①夏天打开汽水瓶盖时,压强减小,气体的溶解度减小,会有大量气泡冒出。 ②喝汽水后会打隔,是因为汽水到胃中后,温度升高、气体的溶解度减小。 ③养鱼池中放几个水泵,把水喷向空中,增大与氧气的接触面积,增加水中氧气的溶解量。 ④不能用煮拂后的凉开水养鱼,因为温度升高,水巾溶解的氧气减少,因而凉开水中几乎不含氧气。
物质的溶解性和溶解度的关系
物质溶解性的概念: 物质的溶解性表示在某温度和压强下,一种物质在另一种物质里溶解能力的大小。
影响因素: 溶解性的大小与溶质,溶剂的性质(内因)有关,也与温度,压强(外因)有关。 如:食盐易溶于水,却不易溶于油脂,油脂易溶于汽油里,却不易溶解在水里;气体溶质的溶解性与压强, 温度有关,而固体、液体溶质的溶解性一般只与温度有关,不考虑压强。
溶解性和溶解度的理解: 溶解性和溶解度都是物质的一种物理性质,不因溶质和溶剂的多少而改变,但与溶剂和溶质的性质有关,并受温度的影响。溶解性只是一般地说明某种物质在水里溶解能力的大小。通常用难溶(或不溶)、微溶、可溶、易溶等较粗略的概念表示;溶解度是衡量物质在某种溶剂里溶解性大小的尺度,是溶解性定量的表示方法。
乳化和乳化作用
额……小编还在整理数据……
悬浊液、乳浊液
定义: 悬浊液:固体小颗粒悬浮在液体里形成的混合物。 乳浊液:小液滴分散到液体里形成的混合物 。
说明: 固体小颗粒是由许多分子集合而成的,小液滴也是由许多分子集合而成的,故悬浊液和乳浊液是不均一,不稳定的混合物
溶液、悬浊液、乳浊液的比较:
溶解过程中的放热和吸热
概念: 在溶解过程中发生了两种变化,一种是溶质的分子(或离子)在水分子的作用下向水中扩散,这一过程吸收热量;另一种是扩散的溶质的分子(或离子)和水分子作用,生成水和分子(或水和离子),这一过程放出热量。
物质溶解过程中的两种变化: 扩散过程:溶质的分子(或离子)向水中扩散,是物理过程,吸收热量 水合过程:溶质的分子(或离子)和水分子作用,生成水合分子(或水合离子),是化学过程,放出热量
溶解过程中的温度变化: a.扩散过程中吸收的热量>水合过程中放出的热量,溶液温度降低,如:NH4NO3溶解于水。 b.扩散过程中吸收的热量<水合过程中放出的热摄,溶液温度升高,如:NaOH、浓硫酸溶解于水。 c.扩散过程中吸收的热量≈水合过程中放出的热量,溶液温度几乎不变,如:NaCl溶解于水。
常见冷冻混合物: 在生产、生活中常用冰作冷却剂,但冰只能提供 0℃左右的低温。一些医疗和研究单位常需要更低的温度,提供低温较方便的方法是用冷冻混合物。 下表是几种常见冷冻混合物的组成及所能达到的最低温度。
燃料
额……小编还在整理数据……
化学实验
化学实验总结
空气中氧气含量的测定
1.操作步骤:在集气瓶内加入少量水,并将水面上方空间分为5等份。用止水夹加紧胶皮管。点燃燃烧匙内的红磷后。立即伸入瓶中并把塞子塞紧,观察红磷燃烧的现象。待红磷熄灭并冷却后,打开止水夹,观察实验现象及水面的变化情况。 2.实验现象:有大量白烟产生,集气瓶内水面上升了约1/5体积。 3.实验结论:氧气体积约占空气体积的1/5。 4.注意事项: ①红磷要取足量或过量; ②实验前检查装置气密性; ③止水夹夹紧; ④点燃红磷后立即伸入瓶中并把塞子塞紧; ⑤要冷却完全。
高锰酸钾制氧气
1.操作步骤:查-装-定-点-收-离-熄 2.实验现象:有大量气体进入集气瓶中。 3.实验结论:利用高锰酸钾可以制氧。 4.注意事项: ①试管口略向下倾斜:防止冷凝水倒流引起试管破裂 ②药品平铺在试管的底部:均匀受热 ③铁夹夹在离管口约1/3处 ④导管应稍露出橡皮塞:便于气体排放 ⑤试管口应放一团棉花:防止高锰酸钾粉末进入导管 ⑥排水法收集时,待气泡均匀连续冒出时再收集(刚开始排出的是试管中的空气) ⑦实验结束时,先移导管再熄灭酒精灯:防止水倒吸引起试管炸裂 ⑧用向上排空气法收集气体时,导管伸到集气瓶底部
电解水
1.操作步骤:在一个盛有水的水槽中倒立两支盛满水的试管,接通直流电源,观察电极上和试管内有什么现象发生。切断装置的电源,在水下用拇指堵住试管口,把试管取出,直立后松开拇指,立即把带有火星的木条伸入试管,进行观察。 2.实验现象:通电后,电极上出现了气泡,通电一段时间以后,正、负两极产生的气体体积比大约为1:2。伸入正极试管里的带火星木条燃烧,负极试管里的气体/燃烧并出现淡蓝色火焰。 3.实验结论:水是由氢、氧两种元素组成的。 4.注意事项: ①水中可加入少量硫酸钠或氢氧化钠以增强导电性。 ②在实验进程刚开始时,氧气和氢气的体积比与1:2不符,是因为氧气不易溶于水,但会溶解一小部分;氢气难溶,反应速率较慢,所以氢气较多
木炭还原氧化铜
1.操作步骤:把刚烘干的木炭粉末和氧化铜粉末混匀,小心地铺放进试管,并将试管固定在铁架台上。试管口装有通入澄清石灰水的导管,用酒精灯加热混合物几分钟。然后先撤出导气管,待试管冷却后再把试管里的粉末倒在纸上,观察现象。 2.实验现象:黑色粉末逐渐变为红色,石灰水变浑浊。 3.实验结论:碳具有还原性。 4.注意事项: ①反应完后先将盛有石灰水的试管移走,防止液体倒吸进入试管,使热的试管炸裂。 ②实验完毕不能立即将试管内的物质倒出观察,防止高温的铜与空气中的 氧气反应重新氧化成氧化铜。
一氧化碳还原氧化铜
1.操作步骤:按如图所示的装置在玻璃管里放入氧化铜,先通CO,后加热,反应完毕先停止加热,至玻璃管冷却后停止通入CO。 2.实验现象:黑色固体变成红色,澄清石灰水变浑浊,末端导管处产生蓝色火焰。 3.实验结论:一氧化碳具有还原性。 4.注意事项:实验前要对一氧化碳进行验纯。
铁的冶炼
1.操作步骤:按如图所示的装置在玻璃管里放入氧化铁,先通CO,后加热,反应完毕先停止加热,至玻璃管冷却后停止通入CO。 2.实验现象:玻璃管里的粉末由红棕色逐渐变黑,澄清石灰水变浑浊。 3.实验结论:炼铁的原理就是利用一氧化碳与氧化铁的反应。 4.注意事项:反应结束后应先停止加热,待冷却后停止通气。
铁制品锈蚀条件
1.操作步骤: (1)在第一支试管中放入一根铁钉,注入蒸馏水,不要浸没铁钉,使铁钉与空气和水接触。 (2)在第二支试管中放入一根铁钉,注入刚煮沸过的蒸馏水(以赶走水中溶解的空气)至浸没铁钉,然后在水面加上层植物油,使铁钉只与水接触。 (3)将第三支试管用酒精灯烘干,放入一根铁钉,用橡皮塞塞紧试管口,使铁钉只与干燥的空气接触。 每天观察铁钉生锈的情况,并认真做好记录。 2.实验现象:Ⅰ中铁钉生锈,Ⅱ中铁钉不生锈,Ⅲ中铁钉不生锈。 3.实验结论:铁生锈的过程实际上是铁与空气中的氧气和水蒸气发生化学反应的过程。 4.注意事项:①要用蒸馏水;②要用洁净无锈的铁钉。
化学与社会发展
化学与社会发展
人类重要的营养物质
人类为了维持生命和健康,必须摄取食物。从营养学的角度看,其基本成分主要有蛋白质、糖类、油脂、维生素、无机盐和水六大类,通常称为营养素。 人体生长发育和进行各种活动,不可缺少营养物质,营养物质都来自食物。我们吃的各种食物中,含有六大类营养物质:蛋白质、糖类、脂肪、维生素、水和无机盐。每一类营养物质,都是人体所必需的。它们的食物来源如下:蛋白质主要从瘦肉、鱼、奶、蛋、豆类等食物中获得;糖类主要从谷类、豆类和根茎类等食物中获得;脂肪主要从猪油、奶油、蛋黄、花生油、芝麻、豆类等食物中获得;维生素主要从动物的肝脏、肾及各种蔬菜、水果等食物中获得;而无机盐的来源则较广泛。因此应合理安排饮食,不仅要保证一定的数量,还要注意合理的搭配,以保证各种营养元素均衡摄入。
注意:维生素并非“多多益善” 维生素A超量摄入的副作用:导致中毒,急性中毒表现为头晕、嗜睡、头痛、呕叶、腹泻等症状。超量服用维生素B在200mg以上,将会产生药物依赖,严重者能出现步态不稳、手足麻木等。维生素C如果每次服用超过1g时,就可能为病毒提供养料,可谓得不偿失,还可能导致腹痛、腹泻、尿频,影响儿童生长发育、影响孕妇的胎儿发育,甚至患先天性坏血病等。维生素D长期超量服用在1800mg后,就会出现生长停滞,影响儿童生长发育。维生素E每日用量400~800mg后,可引起视力模糊,乳腺肿大,头痛,头晕,恶心等。长期服用超过800mg,将改变分泌代谢,免疫功能下降等。
蛋白质是构成细胞的基础物质,是机体生长和修补受损组织的主要原料。 (1)蛋白质是由多种氨基酸(如丙氨酸、甘氨酸等)构成的极为复杂的化合物,相对分子质量从几万到几百万。人体通过食物获得蛋白质,在胃肠道里与水发生反应,生成氨基酸。氨基酸经肠壁进入血液循环,一部分氨基酸被氧化,生成尿素、二氧化碳和水等排出体外,同时放出能量供人体活动的需要(每克蛋白质完全氧化约放出18 kJ的能量)。另一部分氨基酸再重新组成人体需要的各种蛋白质,维持人体的生长发育和组织更新。 (2)血红蛋白的功能 血红蛋白是由蛋白质和血红素组成的,血液中的血红蛋白在吸入氧气和呼出二氧化碳的过程中起着载体的作用。在肺部,血红蛋白中的Fe2+与氧结合成为氧合血红蛋白,随血液流到机体的各个组织器官,放出氧气,供体内氧化使用,同时血红蛋白结合血液中的二氧化碳,携带到肺部呼出。 (3)酶及其功能 酶也是一类重要的蛋白质,是生物催化剂,能催化生物体内的反应。一种酶只能催化一种反应,而且是在体温和接近中性的条件下进行的。
糖类是人类食物的重要成分,是由C、H、O三种元素组成的化合物。它是为人体提供热能的三种主要营养素中最廉价的营养素。食物中的糖类分成两类:人体可以吸收利用的有效糖类(如单糖、双糖、多糖)和人体不能消化的无效糖类(如纤维素)。 ①淀粉属于糖类,它主要存在于植物种子或块茎中,如稻、麦、马铃薯等。淀粉的化学式为(C6H10O5)n,相对分子质量从几万到几十万。食物淀粉在人体内经酶的作用,与水发生一系列反应,最终变成葡萄糖,葡萄糖的化学式为C6H12O6。葡萄糖经过肠壁吸收进入血液成为血糖,输送到人体的各个组织器官,为人体组织提供营养。
油脂是重要的营养物质。常见的油脂有花生油、豆油、菜籽油等。在常温下,植物油脂呈液态,称为油;动物油脂呈固态,称为脂肪,二者合称油脂。 油脂对人体的作用:油脂是重要的供能物质,油脂在人体内完全氧化时,每克油脂放出39.3 kJ的能量。在正常情况下,每日需摄入50~60 g油脂,它供给人体日需能量的20%~25%,一般成年人体内贮存占人体质量10%~20%的脂肪,它是维持生命活动的备用能源。当人进食量小、摄入食物的能量不足以支付机体消耗的能量时,就要消耗自身的脂肪来满足机体的需要,此时人就会消瘦。而当人体摄入过多的油脂后,容易引发肥胖和心脑血管疾病。
化学元素与人体健康
注意 缺钙:幼儿和青少年会患佝偻病,成年人会患骨质疏松。
组成人体自身的元素有50多种。人体中含量较多的元素有11种,称为常量元素,它们约占人体质量的99.95%。在这11种元素中,氧、碳、氢、氮4种元素含量较高,人体通过摄入水、糖类、蛋白质、油脂和维生素等物质来获取这些元素,并通过复杂的化学变化将其转化为人体的各个组成部分。钙、磷、钾、硫、钠、氯和镁7种元素含量较少。除这11种元素以外的其他元素,如铁、锌、碘、硒等,其含量在0.01%以下,称为微量元素。这些微量元素主要以无机盐的形式存在于水溶液中。它们有些是构成人体组织的重要材料;有些能够调节人体的新陈代谢,促进身体健康。
有机合成材料
额……小编还在整理数据……
残风若流做
。