导图社区 2018-2019学年沪教版6上册年级数学概念(中英对照)
2018-2019学年沪教版6年级上册学习概念(中英对照)预习复习思维导图笔记。
编辑于2019-02-14 03:27:25沪教版数学6年级上册知识概念 (The knowledge of the Shanghai version grade 6 first book(mathematics))
第一章--数的整除 (chapter 1--exact division of numbers)
第一节--整数和整除 (section 1--whole numbers and exact divisions)
1.1--整数和整除的意义(1.1--the meaning of whole numbers and exact divsion-s)
整数(whole number)
定义(definition)
不是小数(not a decimal number)
不是分数(not a fraction)
个数(number of whole number)
∞无限个(infinite)
种类(types)
自然数(natural number)
种类(types)
正整数(positive whole number)
定义(definition)
大于零的整数(whole numbers that's bigger than zero)
个数(the number of it)
∞无限个(infinite)
零(zero)
定义(definition)
0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。(0 is an integer between -1 and 1.It's the smallest natural number, it's the rational number.0 is neither positive nor negative, but the boundary between positive and negative.0 has no reciprocal, the negative of 0 is 0, the absolute value of 0 is 0, the square root of 0 is 0, the cube root of 0 is 0,0 times anything is 0, anything to the 0 power other than 0 is 1.0 can't be in the denominator, all multiples of 0 are 0.0 is not a divisor.)
写作(written as)
0
负整数(negative whole numbers)
定义(definition)
小于零的整数((whole numbers that's smaller than zero)
历史(history)
初期(公元500年前后)(beginning(around 500))
公元500年前后,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。(Around 500 AD, the punjab region of the northwestern Indian subcontinent was in the lead in mathematics.Astronomer Hayden haidt made a new breakthrough in simplifying Numbers: he recorded Numbers in a grid. If the first grid contained a symbol, such as a dot for 1, then the same dot in the second grid represented 10, and the third grid represented 100.In this way, not only the numerical symbols themselves, but also the order in which they are placed also have significance.Later, Indian scholars introduced the symbol for zero.These symbols and representations are, so to speak, the ancient ancestors of today's Arabic numerals)
发展(公元700年前后)(develope(around700))
大约700年前后,阿拉伯人征服了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢?后来,阿拉伯人把这种数字传入西班牙。(When the arabs conquered punjab around 700 years ago, they were surprised to find that the conquered region was better at maths than they were.By what means can we bring this advanced mathematics to the Arab world? Later, arabs introduced the Numbers to Spain.
发展(10-15世纪)(develope(10-15th centry))
公元10世纪,又由教皇热尔贝·奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已。(In the 10th century, Pope gerber oleac spread to other European countries.Around 1200 AD, European scholars formally adopted these symbols and systems.By the 13th century, ordinary europeans were also adopting Arabic numerals, a phenomenon that was widespread by the 15th century.At that time, the shape of Arabic numerals and modern Arabic numerals are not exactly the same, but close.)
现代(17世纪以后)(now (after 17th centry))
为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。(Many mathematicians have gone to great effort to make them one, two, three, four, five, six, seven, eight, nine, and zero.)
整除(exact division)
定义(definition)
被除数须是整数(the dividend must be a whole number)
除数是整数(the divisor must be a whole number)
商是整数(the quotients must be a whole number)
余数为零(the remainder must be 0)
如果算式的结果是整除,则一定是除尽(if a equation‘s resalt is exact division,the equation must be a divide equation )
如果算式的结果是除尽,不一定是整除(if a equation’s resalt is divide,it might not be exact division)
数学家们关于整除的故事(stories about exact division)
毕达哥拉斯对数字很有发现,220和284,每一个都等于对方除数的和。(220的整除数有:1 2 4 5 10 11 20 22 44 55 110,和为 248,248的整除数有:1 2 71 142,其和为 220)。另一对朋友数字是到两千多年后的1636年,由费尔马发现的: 是17296和18416。后来的数学家们又发现了许多。值得一提的是其中大约第六十对,也是最小的一对1184和1210,是在1866由一个十六岁的意大利学生发现的。(Pythagoras has found a lot of things in maths,220 and 284,both of them are the sum of each other's factors(factors of 220:1,2,4,5,10,11,20,22,44,55,110,the sum is 248,the factors of 248:1,2,71,142,the sum is 220)another pair of "friend numbers"are found in 1636,which is 2000years later,the founder is Ferman :17296 and 18416.later, the Mathematician founded a lot.speacialy,the sixtyth pair of "friend number"is found by a italian 16year old student)
完美数,即其所有整除数的和为自身。如6的整除数为1 2 3,其和为 6, 28的整除数为 1 2 4 7 14,其和为 28。除6和28外,古希腊人还知道496和 8128,第五个完美数33,550,336是七百多年后发现的。到一九九八年四月,共发现有37个完美数,都是偶数。(A perfect number is the sum of all its factors(exapt its self).If 6 is divisible by 1, 2, 3, the sum is 6, and 28 is divisible by 1, 2, 4, 7, 14, the sum is 28.Besides 6 and 28, the ancient greeks also knew 496 and 8128, and the fifth perfect number 33,550,336 was discovered more than 700 years later.By April 1998, there were 37 perfect Numbers, all of them are even number)
1.2--因数和倍数(1.2--factors and multiples)
因数(factors)
定义(defnition)
如果整数A÷整数B=整数C,那B是A的因素(if whole number"A"÷whole number"B"=whole number"c",than "B"is the factor of "A")
一个正整数拥有的因数个数(the number of factor a positive whole number have)
不定,但有限(not the same,but not infinite)
一个正整数最小的因数(the smallest factor of a positive whole number)
1
一个正整数最大的因数(the biggest factor a positive whole number have)
它本身(the number it self)
倍数(multiples)
定义(definition)
如果整数A÷整数B=整数C,那A是B的倍数(if whole number"A"÷whole number"B"=whole number"c",than "A"is the multiple of "B")
因数与倍数在日常生活中的应用(the use of factors and multiples in daliy life)
北美洲科学家发现,当地蝉的生命周期大都为质数,比如在北美洲北部地区周期为17 年,而在北美洲南部地区周期为 13 年,为什么是 17 和 13,而不是其他数字呢?科学家解释说,蝉在进化的过程中选择质数为生命周期,可以大大降低与天敌遭遇的概率。如果它的生命周期是 12年,则与那些生命周期为 1 年、2 年、3 年、4 年、6年及 12 年的天敌都可能遭遇,从而使得种群生存受威胁。(Scientists in North America have found that the life cycle of local cicadas is mostly prime number. For example, in the northern part of North America, the cycle is 17 years, while in the southern part of North America, the cycle is 13 years.Scientists explained that cicadas select prime Numbers as their life cycle during their evolution, which can greatly reduce the probability of encountering natural enemies.If it has a life cycle of 12 years, it could encounter predators with a life cycle of one, two, three, four, six and 12 years, putting the population at risk.)
为什么时间(时、分、秒) 的进率选择了 60 ?史学家通过考证认为,这是因为"在 100 以内的自然数中,60 的因数最多",这样可以使许多有关时间的运算 (特别是古代有关历法计算) 变得十分简便。(Why is the time (hour, minute, second) base rate has chosen 60?Historians have argued that this is because " 60 has the greatest number of factors,of all the natural Numbers within 100," which makes many calculations about time (especially in the ancient calendar) much easier.)
1.3--能被2、5整除的数(1.3--the nmbers that can be divided by 2、5)
定义、特点(definition,and speacial points)
能同时被2、5整除的数(can be divided by both 2 and 5)
个位数上是零(0 on it's unit place)
因为2、5的最小公倍数是10,因此能被2、5同时整除的都是能被10整除的(the least common multiple for 2,5is 10,so the numbers that can be divided by 2,5 can be divided by 10)
第二节分解素因数 (section 2--factorization factors)
1.4--素数、合数与分解素因素(1.4--prime numbers、compostive numbers and factorization factors
素数(prime numbers)
定义(definition)
因数只有1和它本身(only 1 and it self as it‘s factor)
个数(number of it)
无限个(infinity)
最大(the biggest)
没有(未知)(no(not known yet))
最小(the smallest)
2
合数(compositive numbers)
定义(definition)
有至少3个因数(at least 3 factors)
个数(number of it)
无限个(infinity)
最大(biggest)
没有(未知)(no(not found)
最小(smallest)
4
分解素因素( factorization factors)
定义(definition)
被分解的数必须在等号左边(the number that’s been divided must be at the left of the equal sign)
等号右边的数必须是素数(all the number which is on the right of the equal sign must be prime number)
等号右边必须是乘法(it must be multiplication)
等式必须成立(it must equal)
1.5--公因数与最大公因数(1.5common facotor and the highest common factor)
公因数(common factors)
定义(definition)
两个数共有的因数(the factor that the numbers both have)
最大公因数(highest common factors)
定义(definition)
两个数共有的因数中最大的(the biggest factor that the two numbers both have)
特点(speacial point)
当某个数是另一个数的倍数时,这两个数的最大公因数倍数就是较小的那个(when one number is a multiple of another number,the smaller number is the highest comon factor of them.)
1.6--公倍数与最小公倍数(1.6--multiples and the least common multiple)
公倍数(common multiple)
定义(definition)
两个数共有的倍数(the multiple that the tow numbers both have)
个数(number of it)
无限个(infinity)
最小公倍数(least common multiple)
定义(definition)
两个数共有的倍数中最小的那个(the smallest multiple that the two numbers both have)
特点(speacial point)
当某个数是另一个数的倍数时,这两个数的最小公倍数就是较大的那个when one number is a multiple of another number,the bigger number is the least common multiple of them.)
第二章--分数 (chapter 2--fractions)
第一节--分数的意义和性质 (section 1--the meaning and the charator of fra-ctions)
2.1--分数与除法(2.1--fractions and division)
分数(fractions)
包括(include)
分子(numerator)
分数线(fraction line)
分母(denominator)
种类(types)
真分数(proper fraction)
定义(definition)
分子比分母小(the numerator must be smaller tham the denominator)
假分数(improper fraction)
定义(definition)
分子大于等于分母(the numerator must be equal or bigger than the denomnator)
带分数(mixed number)
定义(definition)
一个整数和一个真分数组成的混合体,整数在左(a mix of whole number and proper fraction)
个数(number of it)
无限个(infinity)
历史(history)
提出者(founder)
巴比伦人 (Babylonians)
初期(beginning)
在大约1000bc,最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等(At about 1000bc, the earliest fractions were integer reciprocals: ancient symbols representing one half, one third, one quarter, etc...)
发展(develope)
希腊人使用单位分数和持续分数。希腊哲学家毕达哥拉斯的追随者发现,两个平方根不能表示为整数的一部分。在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。(The greeks used unit scores and continuous scores.Followers of the Greek philosopher Pythagoras discovered that two square roots could not be expressed as part of an integer.Among the 150 hindus in India, the jain mathematician wrote "Sthananga Sutra", which contains the theory of Numbers, arithmetic operations and operations.)
现在(now)
现代的称为bhinnarasi的分数似乎起源于印度在Aryabhatta, Brahmagupt和Bhaskara的工作。他们的作品通过将分子放在分母上,但没有它们之间的条纹,形成分数。在梵文文献中,分数总是表示为一个整数的加和减。整数被写在一行上,其分数在两行的下一行写成。如果分数用小圆⟨0was或交叉⟨+ was标记,则从整数中减去;如果没有这样的标志出现,就被理解为被添加。(The modern fraction known as bhinnarasi appears to have originated in India with the work of Aryabhatta, Brahmagupt and Bhaskara.Their work forms fractions by placing the numerator on the denominator, but without the streaks between them.In Sanskrit literature, a fraction is always represented as the addition and subtraction of an integer.Integers are written on one line and fractions are written on the next line.If the score with a small round ⟨ 0 was or cross ⟨ + was mark, subtract from integer;If no such mark appears, it is understood to be added.)
读作(read as)
几分之几(X out of X)
除法(division)
定义)(definition)
余数不能大于商(the remainder cannot be bigger than the result)
被除数除以除数等于商(dividend divided by divisor equals the result)
包括(include)
被除数(dividend)
除数(divisor)
商(result)
除号(division sign)
(可能包括)余数((may have) remainder)
结果的种类(types of resalt)
整除(exact division)
除尽(divisible)
除不尽(indivisible)
历史(history)
初期(beginning)
除法运算所使用的除号“÷”被称为雷恩记号,因为它是瑞典人雷恩在1659年出版的一本代数书中首先使用的。(The division sign used in division operations is called the raine sign because it was first used by the Swede raine in an algebra book published in 1659)
现在(now)
1668年,他这本书译成英文出版,这个记号得以流行起来,直到现在。(In 1668, his book was translated into English and published, and the mark has been popular ever since.)
性质
定义
商不变
特点
与分数相同
分数与除法的关联(relationship between fractions and division)
分数的分子与分母等于除法中的被除数与除数,分数线等于除法中的除号(the numerator equal the dividend,the denominator equal the divisor,the fraction line equals the division sign)
2.2--分数的基本性质(2.2--the meaning and charactor of fractions)
定义(definition)
商不变(no change of the result)
定义(definition)
当分子和分母同时扩大或缩小同一个数时,分数的商不变(when the numerator and the denominator times or divied by a same number the resalt of the fraction will not change)
特点(special point)
与除法相同(it's the same as division)
2.3--分数的大小比较(2.3--the compare of fraction)
定义(做法)(definition(how to do it))
同分母(same denominator)
分子较大的较大(the bigger the numerator is the bigger the fraction is)
同分子( same numerator)
分母较小的较大(the smaller the denominator is, the bigger the fraction is)
不同分母、分子(both the denominator and numerator are diffrent)
先找通分,然后分子也乘以分母乘以等那个数。然后用比较同分母的方法比较分数。(first make the denominator to the same number,then use the way that we use for the same denominator)
第二节--分数的运算 (section 2--the calculation of fractions)
2.4--分数的加减法(2.4--addition and subtraction of fractions)
定义(definition)
分母相同(same denominator)
直接分子相加减,分母保留(do addition or subtraction on the numerator and the denominator dont change)
分母不同(different denominator)
先通分,然后按照分母相同进行运算(first change the denominator to the same,then do what you do as they have the same denominator)
2.5--分数的乘法(2.5--multiplication of fractions)
定义(definition)
直接分母乘以分母,分子乘以分子(denominator times denominator,numerator times numerator)
2.6--分数的除法(2.6--division of fractions)
定义(definition)
除号前的分数乘以除号后的那个分数的倒数(the fraction infront of the division sign times the reciprocal of the number after the division sign)
2.7--分数与小数的互化(2.7--change a number from either fraction to decimal or the other way)
定义(definition)
假分数/带分数(improper fraction/mixed number)
将整数部分移开然后分子除以分母然后相加(numerator divided by denominator than add the whole number)
真分数(propefraction)
分子除以分母(numerator divided by denominator)
2.8--分数、小数的四则混合运算(2.8--the mixed calculation of factors)
定义(definition)
先将全部数都变成小数/分数,然后进行四则运算(first change all number into decimal or fraction,than do the calculations)
2.9--分数运算的应用(2.9--the use of fractions calculations)
第三章--比和比例 (chapter 3--compare and proportion)
第一节--比和比例 (section 1--compare and proportion)
3.1--比的意义(3.1--the meaning of compare)
包括(include)
:
比例前项(the number before the first“:”)
比例中项(the number between the first and second“:”)
比例后项(the number after the last“:”)
第一比例项(the number before the first“:”)
第二比例项(the number between the first and second“:”)
第三比例项(the number between the second and third“:”)
第四比例项(the number after the last“:”)
特点(special point)
如果只有两个比例项,那第一比例项等于分数中的分子,第二比例项等于分母,冒号等于分数线,同样适用于除法(if there is only two numbers to compare,than the first one equal to the numerator,the second one equals the denominator,。it also works with division)
定义(definition)
有至少两个比例项(at least two numbers to campare)
有冒号(there is a“:”)
读作(read as)
几比几(X to X)
3.2--比的基本性质(3.2--the charactor of compare)
定义(definition)
内项基等于外项基(the result of the second and third number to campare should equal to the result of the first and last number to campare)
3.3--比例(3.3--proportion)
第二节--百分比 (section 2--percentage)
3.4--百分比的意义(3.4--the meaning of percentage)
定义(definition)
必须有百分号(there must be a“%”)
必须有一个数(there must be a number)
历史(history)
初期(start)
“%”这个符号起源于15世纪的意大利商人。当他们为自己的货物降价时,会使用一种特定的缩写符号:一个小小的“p”,加一短横,旁边是一个充满艺术风格的“c”,上面还画着一个小圆圈,用来代表“per cento”(“per cento”意为:“一百中的”)。(The symbol % originated from Italian traders in the 15th century.When they cut prices on their goods, they used a particular abbreviation: a small 'p' with a short bar next to an art-inspired 'c' with a small circle painted on it,used to present“per cento”(“per cento”means:“out of 100”))
发展(develope)
这个最初的符号经过数百年的演变。 (this symbole developed 100 years)
现在(now)
逐渐变成了我们现在所看到的样子(and it changes into what we see today)
写作(written as)
XX%
读作(read as)
百分之几(XX percent)
包括(include)
一个数(one number)
%
3.5--百分比的应用(3.5--the use of percentage)
出席率(attendance)
实际出席的人数/应该出席的人数X100%(how many people today/how many people we should haveX100%)
缺席率(absent rate)
缺席人数/应该出席人数X100%(how many people are not here/how many people should be hereX100%)
亏损率(loss rate)
亏损的钱÷成本×100%(how many we lost divided by the costX100%)
及格率(pass rate)
及格人数/总人数×100%(the people that have pass/all the peopleX100%)
增产率(rate of growth)
增量/原总量X100%(how many more/how many beforeX100%)
3.6--等可能事件(3.6--probability)
定义(definition)
想要的结果数/所有等可能的结果数(the number that you may“bingo”/all the probability)
第四章--圆和扇形 (chapter 4--circles and sectors)
第一节--圆的周长和弧长 (section 1--the perimeter and the arc length of circles)
4.1--圆的周长(4.1--the perimeter of circle)
2XπX圆的半径(2XπX radius of a circle)
4.2--弧长(4.2--arc length )
圆心角的度数/360X2XπX圆的半径( central angle/3602XπX radius of a circle)
第二节--圆和扇形的面积 (section 2--the area of circles and sectors)
4.3--圆的面积(4.3--the are of circle)
圆的半径XπXπ(radius of a circle XπXπ)
4.4--扇形的面积(4.4--the area of sectors)
圆心角的度数/360X圆的半径XπXπ( central angle/3602XπXπ)
相关知识 (related knowledge):
π
历史(history)
公元前1900-1600年(1900-1600bc)
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。(A babylonian tablet (circa 1900-1600 BC) clearly records that PI = 25/8 = 3.125.Ancient Egyptian artifacts from the same period, the lynd mathematical papyrus, also show that PI is equal to the fraction 16/9 squared, approximately equal to 3.1605.The egyptians seem to have known PI much earlier.)
古希腊(Ancient Greek)
古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。(The great Greek mathematician Archimedes (287-212 BC) pioneered the theoretical calculation of the approximate value of PI in human history.Starting from the unit circle, Archimedes first calculated the lower bound of the PI with the inner regular hexagon to be 3, and then calculated the upper bound of the PI with the help of the Pythagorean theorem to be less than 4.He then doubled the number of sides of the hexagon and the hexagon until the hexagon was 96 and the hexagon was 96.Finally, he found the lower and upper bound of PI were 223/71 and 22/7, respectively, and took their average value of 3.141851 as the approximate value of PI.)
236年(236)
中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到了圆周率=3.1416(Liu hui, a Chinese mathematician, used the technique of "circle cutting" to calculate PI. He first connected the regular hexagon with the circle and then divided it successively until the circle was connected with the regular 192 sides.He said, "if you cut your head so thin that you lose so little, if you cut your head so hard that you cannot cut your head, it fits the circumference of the circle and you lose nothing.", which involves the idea of limits.Liu hui gave an approximate value of PI =3.141024. After obtaining PI =3.14, liu hui examined this value and the diameter and volume of dendrobium, a standard copper volume metric made in the han dynasty in the jin armoury, and found that the value of 3.14 was still too small.So we cut the circle to the 1536 polygon, find the area of the 3072 polygon, and get PI =3.1416)
480年(480)
南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率和约率。(Zuchongzhi, a mathematician in the northern and southern dynasties, further obtained the result accurate to seven decimal places, giving the insufficient approximation of 3.1415926 and the excess approximation of 3.1415927.)
现在(now)
超级计算机已经把圆周率算到了第100万兆位(Supercomputers have taken PI to the millionth megabit)
约等于(almost equal to)
3.1415926535897932384626433832795028841971693993751058209749445923078164 0628620899862803482534211706798214808651328230664709384460955058223172 53594081284811174502 8410270193 8521105559 644622948954930381964428810975 6659334461 2847564823 3786783165 27120190914564856692 3460348610 4543266482 13393607260249141273724587006606315588174881520920962829254091715364367892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 31051185480744623799 6274956735 1885752724 8912279381 8301194912
知名数学家(Mathematician)
祖冲之(Zu chong zhi)
重大贡献(significant contribution)
算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位(The value of PI be calculated between 3.1415926 and 3.1415927, equivalent to the seventh decimal place)
出生年份(year of born)
429
死亡年份(year of death)
500
金田康正(Jintian anzheng)
出生年份(year of born)
1949
死亡年份(year of death)
未死亡(still alive)
重大贡献(significant contribution)
在2002年12月6日,将圆周率算到了第1241177300000位(On December 6, 2002, PI was calculated to the 1241177300000th decimal point by him)
楚诺维斯基兄弟(The chunowsky brothers)
重大贡献(significant contribution)
1996年的时候把圆周率算到了第8,000,000,000位小数(In 1996 he counted PI to the 8,000,000,000 decimal place)
节日(festival)
国际圆周率日(pi day)
日期(date)
每年的3月14日(14-3 for every year)
习俗(convention)
吃水果派(eat pies)
升级版(upgraded version)
时间(time)
1592年3月14日6时54分,因为其英式记法为“3/14/15926.54”,恰好是圆周率的十位近似值。(At 6:54 on March 14, 1592, because it can be marked as 3/14/15926.54,it is the tenth decimal place)
3141年5月9日2时6分5秒(从前往后,3.14159265)(At 6:54 on March 14, 1592, because it can be marked as 3141 May 9, 2016 2:6:5 (from front to back, 3.14159265))