导图社区 SerDes
这是一篇关于SerDes的思维导图,包括:并行总线接口、SerDes接口、中间类型补充、串行器解串器(Serializer/Deserializer)、发送端均衡器( Tx Equalizer)、接收端均衡器( Rx Equalizer)。
编辑于2022-10-09 10:27:09 陕西这是一篇关于客户回访的思维导图,主要内容包括:现况,必要性,实施方案。从前期准备到执行流程再到后续管理,都有详细的说明,有助于提升客户回访的效果和效率。
DAC,全称Digital-to-Analog Converter,即数模转换器,是一种将数字信号转换成模拟信号的电子设备。在电子系统中,数字信号通常更容易处理和传输,但在许多应用中,如音频、视频、通信等,最终需要将这些数字信号转换回模拟信号以供人类感知或进一步处理。
GPT、MBR...它们究竟是什么?MBR(Master Boot Record)和GPT(GUID Partition Table)是两种常见的硬盘分区表格式,它们在兼容性、空间分区、系统支持等方面存在显著的区别。以下是对两者的详细概述,希望对大家有所帮助!
社区模板帮助中心,点此进入>>
这是一篇关于客户回访的思维导图,主要内容包括:现况,必要性,实施方案。从前期准备到执行流程再到后续管理,都有详细的说明,有助于提升客户回访的效果和效率。
DAC,全称Digital-to-Analog Converter,即数模转换器,是一种将数字信号转换成模拟信号的电子设备。在电子系统中,数字信号通常更容易处理和传输,但在许多应用中,如音频、视频、通信等,最终需要将这些数字信号转换回模拟信号以供人类感知或进一步处理。
GPT、MBR...它们究竟是什么?MBR(Master Boot Record)和GPT(GUID Partition Table)是两种常见的硬盘分区表格式,它们在兼容性、空间分区、系统支持等方面存在显著的区别。以下是对两者的详细概述,希望对大家有所帮助!
SerDes
并行总线接口
在SerDes流行之前,芯片之间的互联通过系统同步或者源同步的并行接口传输数据,图1.1演示了系统和源同步并行接口。
SerDes接口
源同步接口的时钟频率已经遇到瓶颈,由于信道的非理想(channel)特性,再继续提高频率,信号会被严重损伤,就需要采用均衡和数据时钟相位检测等技术。这也就是SerDes所采用的技术。SerDes(Serializer-Deserializer)是串行器和解串器的简称。串行器(Serializer)也称为SerDes发送端(Tx),(Deserializer)也称为接收端Rx。Figure1.3是一个N对SerDes收发通道的互连演示,一般N小于4。
相比源同步接口,SerDes的主要特点包括:
SerDes在数据线中时钟内嵌,不需要传送时钟信号。
SerDes通过加重/均衡技术可以实现高速长距离传输,如背板。
SerDes 使用了较少的芯片引脚
中间类型
也存在一些介于SerDes和并行接口之间的接口类型,相对源同步接口而言,这些中间类型的接口也使用串行器(Serializer)解串器(Deserializer),同时也传送用于同步的时钟信号。这类接口如视频显示接口7:1 LVDS等。
SerDes的主要构成可以分为三部分
PLL模块
发送模块Tx
接收模块Rx
控制和状态寄存器
环回测试
PRBS测试功能
补充
均衡器
在通信系统的基带或中频部分插入的,能够减少码间干扰, 起到补偿作用的滤波器。分为频域均衡器和时域均衡器
频域均衡器
频域均衡器利用可调滤波器的频率特性来弥补实际信道的幅频特性和群延时特性,使包括均衡器在内的整个系统的总频率特性满足无码间干扰传输条件
时域均衡器
时域均衡器是直接从时间响应角度考虑,使包括均衡器在内的整个传输系统的冲激响应满足无码间干扰条件。频域均衡满足奈奎斯特整形定理的要求,仅在判决点满足无码间干扰的条件相对宽松一些。所以,在数字通信中一般时域均衡器使用较多。
时域均衡器可以分两大类:线性均衡器和非线性均衡器。如果接收机中判决的结果经过反馈用于均衡器的参数调整,则为非线性均衡器;反之,则为线性均衡器。在线性均衡器中,最常用的均衡器结构是线性横向均衡器,它由若干个抽头延迟线组成,延时时间间隔等于码元间隔。非线性均衡器的种类较多,包括判决反馈均衡器(DFE)、最大似然(ML)符号检测器和最大似然序列估计等。
PLL负责产生SerDes各个模块所需要的时钟信号,并管理这些时钟之间的相位关系。以图中线速率10Gbps为例,参考时钟频率250MHz。Serializer/Deserializer至少需要5GHz 0相位时钟和5GHz 90度相位时钟,1GHz(10bit并行)/1.25GHz(8bit并行)时钟等。
一个SerDes通常还要具调试能力。例如伪随机码流产生和比对,各种环回测试,控制状态寄存器以及访问接口,LOS检测, 眼图测试等。
串行器解串器(Serializer/Deserializer)
串行器Serializer把并行信号转化为串行信号。Deserializer把串行信号转化为并行信号。一般地,并行信号为8 /10bit或者16/20bit宽度,串行信号为1bit宽度(也可以分阶段串行化,如8bit->4bit->2bit->equalizer->1bit以降低equalizer的工作频率)。采用扰码(scrambled)的协议如SDH/SONET, SMPTE SDI使用8/16bit的并行宽度,采用8B/10B编码的协议如PCIExpress,GbE使用10bits/20bits宽度。
发送端均衡器( Tx Equalizer)
SerDes信号从发送芯片到达接收芯片所经过的路径称为信道(channel),包括芯片封装,pcb走线,过孔,电缆,连接器等元件。从频域看,信道可以简化为一个低通滤波器(LPF)模型,如果SerDes的速率大于信道(channel)的截止频率,就会一定程度上损伤(distort)信号。均衡器的作用就是补偿信道对信号的损伤。
发送端的均衡器采用FFE(Feed forward equalizers)结构,发送端的equalizer也称作加重器(emphasis)。加重(Emphasis)分为去加重(de-emphasis)和预加重(pre-emphasis)。De-emphasis降低差分信号的摆幅(swing)。Pre-emphasis增加差分信号的摆幅。FPGA大部分使用de-emphasis的方式,加重越强,信号的平均幅度会越小。
发送侧均衡器设计为一个高通滤波器(HPF),大致为信道频响H(f)的反函数H-1(f),FFE的目标是让到达接收端的信号为一个干净的信号。FFE的实现方式有很多,一个典型的例子如图2.5所示。
接收端均衡器( Rx Equalizer)
1.线形均衡器(Linear Equalizer)
接收端均衡器的目标和发送均衡器是一致的。对于低速(<5Gbps)SerDes,通常采用连续时间域,线性均衡器实现如尖峰放大器(peaking amplifier), 均衡器对高频分量的增益大于对低频分量的增益。图2.8为一个线性均衡器的频域特性。通常工厂会对均衡特性封装为数种级别,可以动态设置,以适应不同的信道特性,如High/Med/Low等。
2.DFE均衡器(Decision Feedback Equalizer)
对于高速(>5Gbps)SerDes,由于信号的抖动(如ISI相关的确定性抖动)可能会超过或接近一个符号间隔(UI, Unit Interval), 单单使用线性均衡器不再适用。线性均衡器对噪声和信号一起放大,并没有改善SNR或者说BER。对于高速SerDes,采用一种称作DFE (Decision Feedback Equalizer裁决反馈均衡器)的非线性均衡器。DFE通过跟踪过去多个UI的数据(history bits)来预测当前bit的采样门限。DFE只对信号放大,不对噪声放大,可以有效改善SNR。
补充
Unit Interval 单位时间间隔:通常在通信信号的抖动测试中用来表示抖动幅度的单位。表示一个等步信号的两个相邻的有效瞬时之间的标称时间差
时钟数据恢复(CDR)
CDR的目标是找到最佳的采样时刻,这需要数据有丰富的跳变。CDR有一个指标叫做最长连0或连1长度容忍(Max Run Length或者Consecutive Identical Digits)能力。如果数据长时间没有跳变,CDR就无法得到精确的训练,CDR采样时刻就会漂移,可能采到比真实数据更多的1或者0。而且当数据重新恢复跳变的时,有可能出现错误的采样。比如有的CDR采用PLL实现,如果数据长时间停止跳变,PLL的输出频率就会漂移。实际上,SerDes上传输的数据要么利用加扰,要么利用编码的方法来保证Max Run Length在一定的范围内。
1.鉴相器(PD)
鉴相器用来比较相位误差,相位误差以UP或者DN的信号表示, UP/DN持续的时间正比于相位误差。一个bang-bang结构鉴相器的例子如图2.15。例子中只用了四个相位的恢复时钟作为例子。
2.抽取器和滤波器
抽取器是为了让滤波器在较低的频率下工作。
抽取的步长,平滑的方法都会影响环路的性能。 数字滤波器有比例分支(Proportion)和积分分支(Integral)构成,分别跟踪相位误差和频率误差。 另外数字滤波器的处理延时也不能太大,如果处理延时过大,就会导致环路不能跟踪相位和频率的快速变化,导致误码。
CDR的结构不限于以上两种,还有其他很多变种。基本上都是一个锁相环路。环路的跟随性能,稳定性(STABILITY),带宽(bandwidth)/增益(gain)性能分析是一个非常学术的问题,用小信号线形模型分析,有非常多的书籍和资料解释了环路的量化性能。CDR环路有一些的特点总结如下:
3.环路带宽
1.频率低于环路带宽的相位抖动会透过CDR转移到恢复时钟上。换句话说,频率低于环路带宽的抖动可以被CDR跟踪,不会引起误码。高频的抖动分量根据抖动幅度的大小,可能会引起误码。
2.环路带宽越大,锁定时间越短,恢复时钟的抖动也越大。反之则锁定时间越长,恢复时钟的抖动也越小。作为CDR,我们希望环路带宽大一点,这样可以有更大的抖动容忍能力,但是对于loop timing的应用如SONET/SDH对恢复时钟的抖动有限制,又不能太大。
3. 开关电源的开关频率一般小于环路带宽,可以被CDR跟踪。但是,一方面开关电源耦合到VCO(Digital to Multi-Phase Convertor)上的噪声不能被环路跟踪,低成本Ring VCO尤其对电源噪声敏感。另一方面开关电源的谐波可能超出环路带宽。
一些协议提供了CDR增益模板,如SDH/SONET。兼容这些协议需要计算输入和输出的抖动预算。
公用锁相环(PLL)
数据的抖动(data jitter)
信道channel
芯片封装Package
SI仿真
SERDES是英文SERializer(串行器)/DESerializer(解串器)的简称。它是一种主流的时分多路复用(TDM)、点对点(P2P)的串行通信技术。即在发送端多路低速并行信号被转换成高速串行信号,经过传输媒体(光缆或铜线),最后在接收端高速串行信号重新转换成低速并行信号。这种点对点的串行通信技术充分利用传输媒体的信道容量,减少所需的传输信道和器件引脚数目,提升信号的传输速度,从而大大降低通信成本。