导图社区 概率论基础
大学生必备,一张图带你复习大学高数概率论基础重点学习笔记。《概率论基础》是对本科阶段所学概率论的严格化、抽象和延伸,几个难点包括单调类定理、测度扩张定理、条件期望与正则条件概率,如何在学习中清楚地理解引入它们的背景和基本思想,便不难对全书的内容进行全盘把握了。相信能帮你拿下高分!还不快学起来!
社区模板帮助中心,点此进入>>
论语孔子简单思维导图
《傅雷家书》思维导图
《童年》读书笔记
《茶馆》思维导图
《朝花夕拾》篇目思维导图
《昆虫记》思维导图
《安徒生童话》思维导图
《鲁滨逊漂流记》读书笔记
《这样读书就够了》读书笔记
妈妈必读:一张0-1岁孩子认知发展的精确时间表
概率论基础
事件的关系
相等
包含
交
并
互斥
差
对立
概率
随机变量的数字特征
数学期望
两点分布:p
二项分布:np
泊松分布:λ
均匀分布:(a+b)/2
指数分布:1/λ
正态分布:m
方差
两点分布:pq
二项分布:npq
均匀分布:(b-a)^/2
指数分布:1/λ^
正态分布:σ^
随机变量及其概率分布
离散型和连续型
离散型随机变量及其分布
两点分布
二项分布
泊松分布
几何分布
连续型随机变量及其概率密度
概率密度函数f(x)
均匀分布
指数分布
正态分布
随机变量的分布函数
线性变换
概率的基本公式
加法公式(容斥原理)
乘法公式
条件概率P(B|A)=P(AB)/P(A)
事件的独立性
P(B|A)=P(B)
A、B相互独立的充要条件
P(AB)=P(A)P(B)
贝叶斯公式(逆概率公式)
P(Ai|B)=P(AiB)/P(B)
全概率公式
把一个复杂的事件分解成若干简单互不相容的事件,利用概率的可加性来计算