(2022·湖南·永州市剑桥学校七年级阶段练习)如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°
(2022·贵州六盘水·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x,应为( )A.α+β+γB.β+γ-αC.180°-α-γ+βD.180°+α+β-γ
(2022·全国·七年级专题练习)已知如图所示,AB//CD,∠ABE=3∠DCE,∠DCE=28°,求∠E的度数.
(2022·全国·七年级)如图所示,直角三角板的60°角压在一组平行线上,AB∥CD,∠ABE=40°,则∠EDC=______度.
问题情境:如图①,直线AB∥CD,点E,F分别在直线AB,CD上.(1)猜想:若∠1=130°,∠2=150°,试猜想∠P=______°;(2)探究:在图①中探究∠1,∠2,∠P之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.
如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F= ;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
(1)已知:如图(a),直线DE∥AB.求证:∠ABC+∠CDE=∠BCD;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?
如图,已知AD⊥AB于点A,AE∥CD交BC于点E,且EF⊥AB于点F.求证:∠C=∠1+∠2.
如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=___________度.
如图,若AB//CD,则∠1+∠3-∠2的度数为______
如图,已知AB//DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.