导图社区 量子力学和量子信息
量子力学的初期发展:1.卢梅尔做黑体辐射实验,观察到黑体辐射的电磁波不连续、2.普朗克提出普朗克辐射公式,解释能量是一份一份传播的;量子力学的研究展开。
编辑于2021-11-09 22:09:36量子力学
量子力学的初期发展
1.卢梅尔做黑体辐射实验,观察到黑体辐射的电磁波不连续
2.普朗克提出普朗克辐射公式,解释能量是一份一份传播的
3.爱因斯坦受普朗克辐射启发,解释了光电效应,并因这个对其来说不太重要的贡献得了诺贝尔奖
4.德布罗意受爱因斯坦解释光电效应的启发,提出物质波,即,所有粒子都既具有粒子性也具有波动性
量子力学的研究展开
1.玻尔提出玻尔模型,但只能解释氢原子的各种特性,不具有普适性
2.荷兰两个博士生提出了,电子自旋的假说,后科学界发现所有粒子都有自旋,且自旋只有两个方向,从此打开了一扇大门
3.泡利受此启发,提出了泡利不相容原理,解释电子的分布问题
泡利不相容原理(Pauli exclusionprinciple)又称泡利原理、不相容原理,是微观粒子运动的基本规律之一。它指出:在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或两个以上的电子具有完全相同的四个量子数,或者说在轨道量子数m,l,n确定的一个原子轨道上最多可容纳两个电子,而这两个电子的自旋方向必须相反。这成为电子在核外排布形成周期性从而解释元素周期表的准则之一。
4.薛定谔波动方程(即粒子以概率的方式出现),德拜看到德布罗意的物质波论文,让小弟薛定谔给物质波凑出个方程,这个方程成为了量子力学最重要的公式
观察者效应
所谓的观察者效应指的是,我们可能会影响到观察的所有事物,只不过有一定的程度区别而已,观察者效应重点在于观察。
5.海森堡受启发提出了,不确定性原理(即测不准原理),粒子的动量和位置是无法同时测准的
6.为此引出了,上帝是否掷骰子的争论,爱因斯坦等认为有隐变量,是确定论坚持者,反对玻尔的哥本哈根学派的随机论
EPR实验,贝尔提出了贝尔不等式,实验证明随机论正确
爱因斯坦为了反驳玻尔又提出了量子纠缠,结果量子纠缠又被观察到
爱因斯坦诞辰100周年大会上,约翰.惠勒又向哥本哈根学派挑战,提出延迟实验构想,结果5年后,实验证明随机论的正确
量子力学简要介绍
什么是量子
无处不在的量子力学
量子力学,由于描述微观世界必须用量子力学,而宏观物质的性质又是由其微观结构决定的,所以与我们息息相关的宏观世界也与量子力学息息相关。
相对论在物体以接近光速运动时和强引力场条件下具有基础的重要性,但在日常生活中应用少。
量子力学和相对论是二十世纪的两大科学革命,是现代物理学的两大基石。
量子力学三大奥义:叠加、测量和纠缠
基本概念
比特:“比特”是计算机科学的基本概念,指的是一个体系有且仅有两个可能的状态,一般用“0”和“1”来表示。
“叠加原理”:如果两个状态是一个体系允许出现的状态,那么它们的任意线性叠加也是这个体系允许出现的状态。
狄拉克符号:|>
态矢量:把表示量子力学状态的矢量称为态矢量。
基组:取一组矢量,如果其他所有的矢量都能表示成这组矢量的线性叠加,那么这组矢量就叫做“基组”。
叠加
经典比特可以理解为开关,只能取“0”或“1”
量子比特可以理解为旋钮,可以取旋钮中的任意状态。
在叠加原理的框架下,经典的比特变成了“量子比特”。也就是说,这个体系的状态不是只能取“0”或取“1”了,而是可以取任意的a|0> + b|1>状态,显然,一个量子比特包含比一个经典比特大得多的信息量。
测量
经典力学中的测量,我们不会认为测量过程跟其他过程服从不同的物理规律。无论你看或不看某个物体,你都相信它具有某些确定的性质,如位置、速度,而且你看了以后这些性质不会变化。总之,你可以随便看。
量子力学中,测量跟其他过程有本质的区别,描述测量要用与众不同的物理规律!你不能随便看了,你看或不看某个体系,会造成很大的区别。
在量子力学中,每一次测量都必须对应某个基组。两次测量可以用不同的基组,比如你可以这次用|0>和|1>,下次用|+>和|->,这是允许的,但每次你都必须确定当前用的是哪个基组。
确定了基组,然后,这时有两种情况,取决于待测量的态是不是基组中的一个态。
如果是,那么测量后这个态不变。比如说在|0>和|1>的基组中测量|0>,必然得到|0>。
如果不是,即待测量的态不是基组中的一个态,比如说在|0>和|1>的基组中测量a|0> + b|1>,其中a和b都不等于0,也就是说这个态既不是|0>也不是|1>,这个态会发生突变(坍缩),变成基组中的一个态,即|0>或|1>中的某一个。更具体地说,以|a|2的概率变成|0>,以|b|2的概率变成|1>
我们无法预测特定的某次测量变成|0>还是|1>,能预测的只是概率;由于只可能有这两种结果,所以这两个概率相加等于1。
测量导致状态突变之后,再在同样的基组下测量,就回到了第一种情况(待测的态是基组中的一个态),所以就不会变了。也就是说,如果你第一次测得的是|0>,那么以后你再在|0>和|1>的基组中测量多少次,都仍然是|0>;如果你第一次测得的是|1>,那么以后你再在|0>和|1>的基组中测量多少次,都仍然是|1>。
因果律的终结:测量中的突变,意味着我们对因果律的理解需要改变,即同样的原因可以导致不同的结果!
经典力学中的概率反映的是信息的缺乏,量子力学中的概率是由体系本身的状态决定的,不是由于缺少任何信息,这种随机性是内在的,是量子力学的一种本质特征。
纠缠(比较难于理解)
量子纠缠主要是对多个量子比特体系来说的:上面说的叠加、测量等不可思议的奥义还只是一个量子比特的体系,多个量子比特的体系还存在更加奇怪的“量子纠缠”现象。
前置知识
分离变量
我们先来看一个数学问题。拿出一个二元函数F(x,y),你来试着把它写成一个关于x的函数f(x)与一个关于y的函数g(y)的乘积,也就是说,寻找f(x)和g(y),使得F(x, y) = f(x) g(y)。如果可以,我们就说F(x, y)是可以“分离变量”的。如果不行,我们就说它不能分离变量。同样的定义可以推广到二元以上的函数。
态函数
在量子力学中,体系的状态(没错,就是前面说的态矢量)可以用一个函数来表示,称为“态函数”(是的,你既可以把它理解为一个函数,也可以把它理解为一个矢量,两者不矛盾,怎么方便怎么来)
直积态:单粒子体系的态函数是一元函数,多粒子体系的态函数是多元函数。如果这个多元函数可以分离变量,也就是可以写成多个一元函数直接的乘积,我们就把它称为“直积态”。
纠缠态:单粒子体系的态函数是一元函数,多粒子体系的态函数是多元函数。如果这个多远函数不能分离变量,我们就把它称为“纠缠态”。
态函数的表示(举例)
在量子力学中,我们常常用类似|00>的狄拉克符号来表示两粒子体系的状态,其中第一个符号表示粒子1所处的状态,第二个符号表示粒子2所处的状态,|00>就表示两个粒子都处于自己的|0>态。同理,|01>表示粒子1处于自己的|0>态、粒子2处于自己的|1>态,|11>表示两个粒子都处于自己的|1>态,如此等等。
量子纠缠的解释
如果量子体系的态函数是直积态,就不存在量子纠缠,以一个二个量子比特体系为例,如果其态函数是直积态,那么你在测量粒子1的时候,不会影响粒子2的状态,所以你可以说“粒子1处于某某状态,粒子2处于某某状态”。
如果量子体系的态函数是纠缠态,我们还是以二个量子比特体系为例,如果其态函数为:|β00> = (|00> + |11>)/√2,它是|00>和|11>的一个叠加态(是的,叠加原理对多粒子体系也成立)。|β00>不是直积态,而是纠缠态,不能分离变量。这就意味着,不能用“粒子1处于某某状态,粒子2处于某某状态”这样的语言来描述|β00>,你只能说这个体系整体处于|β00>状态。
这种状态,如果再进行我们上面提到的第二大奥义“测量”,就会很有意思了。在对|β00>做测量的时候。你对它测量粒子1的状态,会以一半的概率使整个体系变成|00>,此时两个粒子都处于自己的|0>;以一半的概率使整个体系变成|11>,此时两个粒子都处于自己的|1>。你无法预测单次测量的结果,但你可以确定,粒子1变成什么,粒子2也就同时变成了什么。两者总是同步变化的。
上面是两个粒子状态相同,同步变化的情况,如果换一个态函数,如|β01>=(|01> + |10>)/√2,则变为测量时粒子1变成什么,粒子2就同时变成了相反的状态。
量子纠缠的提出
有趣的是,纠缠这个重要的量子力学现象,是由几位反对量子力学的科学家提出的,而且其中的“带头大哥”就是爱因斯坦!
1935年,爱因斯坦(Albert Einstein)、波多尔斯基(Boris Podolsky)和罗森(Nathan Rosen)提出了一个思想实验,后人用他们姓的首字母把他们三人合称为EPR。先让两个粒子处于|β00>态,这样一对粒子称为“EPR对”。把这两个粒子在空间上分开很远,可以任意的远。然后测量粒子1。如果你测得粒子1在|0>,那么你立刻就知道了粒子2现在也在|0>。 EPR问:既然两个粒子已经离得非常远了,粒子2是怎么知道粒子1发生了变化,然后发生相应的变化的?EPR认为两个粒子之间出现了“鬼魅般的超距作用”,信息传递的速度超过光速,违反了狭义相对论。所以,量子力学肯定有毛病。
玻尔的解释:处于纠缠态的两个粒子是一个整体,绝不能把它们看作彼此独立无关的,无论它们相距有多远。当你对粒子1进行测量的时候,两者是同时发生变化的,并不是粒子1变了之后传一个信息给粒子2,粒子2再变化。所以这里没有发生信息的传递,并不违反相对论。
仔细想一想,你就会明白EPR实验没有传输信息。如果A希望把一比特的信息“0”或“1”传给远处的B,那么双方需要事先约定好如何表示这个信息,比如说A想传“0”时就让B测得粒子2处于|0>,A想传“1”时就让B测得粒子2处于|1>。假如A能控制测量的结果,比如说这次A一定会让粒子1处于|0>,那么A同时就让粒子2处于了|0>,A确实就给B传了一个“0”。 但是,量子力学的精髓恰恰在于测量的结果是随机的,你不能控制,所以EPR实验不能这么用。A测量粒子1得到的是一个随机数,B测量粒子2得到的也是一个随机数,只不过这两个随机数必然相等而已。你想传一个比特,可是EPR对完全不听你指挥,所以你传不了任何信息。既然没传输信息,当然就不违反狭义相对论了。
问题的解决
贝尔不等式
1964年,贝尔(John S. Bell)指出,可以设计一种现实可行的实验,把双方的矛盾明确表现出来。对两粒子体系测量某些物理量之间的关联程度,如果按照EPR的观点,这些物理量在测量之前就有确定的值,那么这个关联必然小于等于2;而按照量子力学,这个关联等于2√2,大于2。这个“关联小于等于2”的不等式叫做贝尔不等式,如果量子力学正确,就应该不满足贝尔不等式
从1980年代开始,阿斯佩克特(Alain Aspect)等一系列的研究组在越来越高的精度下做了实验,结果都是在很高的置信度下违反贝尔不等式,量子力学赢了。EPR的思想实验最初是用来批驳量子力学的,结果却证实了量子力学的正确!
量子纠缠的意义
现在科学家们认为,纠缠是一种新的基本资源,其重要性可以和能量、信息、熵或任何其他基本的资源相比。不过目前还没有描述纠缠现象的完整的理论,人们对这种资源的理解还远不够深入。有人把纠缠比喻为“青铜时代的铁”,它可能会在下一个历史时代大放异彩。
量子纠缠常见的错误理解
最经常见到的误解是:量子纠缠是个非常神奇的现象,没有人知道它的机制是什么。
实际情况是:量子纠缠的机制就是上面说的这些,叠加原理,测量时的突变,直积态和纠缠态的区别。其实量子纠缠是一个被理论预言然后确实观察到了的现象,而不是意外的实验发现,所以,科学家怎么可能不知道它的机制呢? 如果你觉得这些不像个“机制”,那么请你想想,2 + 3 = 5的机制又是什么?我们只能说,2 + 3 = 5是自然数理论的必然推论,自然数理论就是它的机制。量子纠缠现象就是量子力学原理的必然推论,你不可能把量子力学之外的东西搞成它的机制。
方兴未艾的量子信息
量子信息是量子力学与信息科学的交叉学科,对于信息科学来说,量子力学是一种可资利用的数学框架;量子信息的目的,就是利用量子力学的特性,实现经典信息科学中实现不了的功能。
量子信息的优势
1.显而易见的优势:状态数量的优势,前面比喻过:经典比特是“开关”,只有开和关两个状态,而量子比特是“旋钮”,有无穷多个状态。旋钮的信息量显然比开关大得多。
2.复杂一点的优势:指数增长的优势。(这里不做详尽解释)简单来说就是,量子比特的一次操作,就达到了经典比特2的n次方次操作的效果!
在计算机科学中,把计算量指数增长的问题称为“不可计算的”,把计算量多项式增长的问题称为“可计算的”。不可计算的意思并不是计算机不能算,而是计算量增长得太快,很容易就达到“把全世界的计算机集中起来算几十亿年都无法得出结果”的程度。
这第二个优势,要利用,需要针对特定问题设计巧妙算法才能实现。
所以说,量子计算机的强大,是与问题相关的,只针对特定的问题。
量子信息的应用
主要分为两个方向:量子计算,量子通信
量子计算
1.量子因数分解(破解最常用的密码体系)
因数分解:所谓因数分解,就是把一个合数分解成质因数的乘积,例如21 = 3 × 7。因数分解是数学中的经典难题。
因数分解的特点:它的逆操作,即算出两个质数的乘积,是非常容易的;而它本身,却是非常困难的。这种“易守难攻”的特性,使它在密码学中得到了重要的应用。
因数分解的困难性,是现在世界上最常用的密码系统“RSA”的基础。
RSA这个名字,是三位发明者李维斯特(Ron Rivest)、萨莫尔(Adi Shamir)和阿德曼(Leonard Adleman)的首字母缩写。
RSA是一种“公开密钥密码体系”,它的密钥(即加密时用到的参数)是对全世界所有人公开的。
为什么敢公开?因为这个密钥是一个很大的合数,解密需要把它分解成两个质数,而发布者有信心别人在正常的时间内解不开。
2.量子搜索(用途最广泛的量子算法)
量子搜索问题:设想有一部杂乱无章的N个人名的花名册,其中的人名没有按照任何特别的顺序排列,而且每个名字可能出现不止一次。你想在其中找到某个名字,如“张三丰”,该怎么办呢?
经典框架下的算法:
在经典框架下,最好的算法也就是最老实的算法:从头看到尾。如果运气好,第一个就是张三丰;如果运气不好,到最后一个即第N个才找到张三丰。平均而言,这需要N/2次操作。如果N表示成二进制有n位,那么计算量就是2n-1的量级,又是指数增长,不可计算。这个结果不可能改进了,因为排列顺序是完全没有规律的。
量子算法:
量子算法能够改进。1996年,格罗弗(Lov K. Grover)提出了一种搜索的量子算法。基本思路是:把所有的解(搜索问题的解可能不止一个)对应的态矢量记为|ω>,初始状态对应的态矢量记为|s>。我们不知道|ω>是什么,但格罗弗的算法可以把态矢量向|ω>的方向旋转,每次旋转都靠近一点。经过N的平方根量级的步数,就可以以50%的置信度找到解。
量子搜索算法付出的代价,是结果不再是完全确定的。有可能你本来想找张三丰,实际找到的却是张无忌。但好处是计算量从N的级别下降到了√N的级别,而不确定程度可以随需求任意减少,大不了多迭代几次。
经典搜索算法不能改进,是因为它只能给出确定的答案,找到了就是找到了,没找到就是没找到。但只要你放弃这个刚性的要求,接受以一定的概率找到解(这个概率可以非常接近100%),量子搜索算法就可以减少计算量。这实际上是各种问题的量子算法的一个普遍特点。
无格式搜索的量子算法对经典算法却只是平方级的改进,√N = 2n/2还是指数增长,没有发生质的变化,仍然是不可计算。但是这个改进已经非常大了。如果N等于一亿,这就是一万倍的节约。
量子搜索带来的计算量下降,可以使算不动的界限大大地向外推,使在实际条件下能够计算的问题范围大大增加。由于搜索是非常常见而重要的问题,所以量子搜索的重要性并不逊于量子因数分解,甚或犹有过之。
量子计算机
量子通信
量子隐形传态
第一次实现量子隐形传态是在1997年,当时潘建伟在奥地利因斯布鲁克大学的塞林格(Anton Zeilinger)教授门下读博士,他们在国际顶级科学杂志《自然》上发表了一篇题为《实验量子隐形传态》(“Experimental quantum teleportation”)的文章,潘建伟是第二作者。这篇文章后来入选了《自然》杂志的“百年物理学21篇经典论文”,跟它并列的论文包括伦琴发现X射线、爱因斯坦建立相对论、沃森和克里克发现DNA双螺旋结构等等。 18年后的2015年,这时潘建伟是中国科学技术大学教授、中国科学院院士,他和陆朝阳等人在《自然》上发表了《单个光子的多个自由度的量子隐形传态》(“Quantum teleportation of multiple degrees of freedom of a single photon”),新的成果是“多个自由度”。这项成果被英国物理学会评为2015年十大物理学突破之首。
量子隐形传态到底是什么呢?它是1993年设计出来的一种实验方案,把粒子A的量子状态传输给远处的粒子B,让粒子B的状态变成粒子A最初的状态。请注意,传的是状态而不是粒子,两个粒子的空间位置都没有变化。好比A处有一辆汽车或一个人,不是把这辆汽车或这个人搬到B处,而是把B处本来就有的一堆汽车零件或原子组装成这辆汽车或这个人。
容易出现的错误理解
1.复制
在量子隐形传态中,当B粒子获得A粒子最初的状态时,A粒子的状态必然改变。在任何时刻都只能有一个粒子处于目标状态,所以只是状态的“移动”,而不是“复制”。
量子隐形传态是在不知道A粒子状态的情况下,把B粒子变成这个状态!就像送快递,不知道送的是什么东西,但保证原原本本地送到。
而且你千万不要试图去知道A粒子的状态哦!一旦你做测量,就强迫A粒子的状态落到了基组中的一个状态上面,整个量子隐形传态都鸡飞蛋打了,而你还是不知道A原来是什么状态。
2.量子隐形传态的速度超过光速
在做测量的时候,如前面所说,状态的变化确实是瞬时的,不需要花费时间。但是量子隐形传态的方案包括若干步,其中一步是把一个两比特的信息(即00、01、10、11这四个字符串之一)从A处传到B处,B根据这个信息确定下一步做什么(在四种待选的操作中选择一个),才能把B粒子的状态变成目标状态。这个信息需要用经典的通信方式(例如打电话、发邮件)传送,速度不能超过光速,所以整个量子隐形传态的速度也不能超过光速。
总而言之,量子隐形传态是以不高于光速的速度、破坏性地把一个体系的未知状态传输给另一个体系。
量子密码术
“量子密码术”,也称为“量子保密通信”或者“量子密钥分发”。这是迄今唯一接近实用的量子信息应用,但这一个就具有极高的军事和商业价值,足以证明各国对量子信息的大力投入是物有所值的。
密码学常识
1.把明文变换成密文,需要两个元素:变换的规则和变换的参数。
前者是编码的算法,例如“在英文字母表上前进x步”。后者是密钥,例如上述算法中的x这个数。如果取x = 1,明文的“fly at once”(立即起飞)就会变成密文的“gmz bu podf”。
2.算法保密很难。
一般人常常以为,我用一个你想不到的算法,就能保密。但事实上,把希望寄托在算法不泄露上,是靠不住的。同一个算法很可能有许多人在用,这些人当中任何一个人都可能泄露算法。如果算法用到机器(例如二战中德国用的Enigma密码机),那么敌人只要得到一台机器,就可以知道算法。
只要你知道有一个人或一台机器泄露了算法,那么所有人的算法就都要换,这个工作量大得惊人。如果你没发现算法的泄露,那损失就更可怕了。例如在第二次世界大战中,德国和日本的密码系统早就被盟国破解了,而他们一直不知道,送上了无数机密。山本五十六的飞机,就是因为行程泄露被击落的。
3.密钥保密相对容易。
所有的保密方法都是通过隐藏某些东西来实现的,需要隐藏的越少,安全性就越高,而最容易隐藏的是密钥。同一个算法可以有很多个密钥,使用同样算法的每一组人都可以用单独的密钥。如果有人泄露了一组密钥,用不着惊慌,只要更换一组密钥就行。即使你没发现密钥泄露,也只是这一组人的情报失窃,不会拖累其他人。 因此,密码学的一个基本原则是,在设计算法时,你必须假设敌人已经知道了算法和密文,唯一不知道的就是密钥。密码学的研究目标就是,让敌人在这种情况下破译不了密文。当然,你可以对算法保密,这可能会增加敌人的困难。但无论如何,不能把希望寄托在这上面。
1.密钥的基本知识
1.香农定理
密钥如果满足三个条件,那么通信就是“绝对安全”的。
这里“绝对安全”是一个数学用语,它的意思是:敌人即使截获了密文,也无法破译出明文,他能做的最多也只是瞎猜而已。
一,密钥是一串随机的字符串;二,密钥的长度跟明文一样,甚至更长;三,每传送一次密文就更换密钥,即“一次一密”。满足这三个条件的密钥叫做“一次性便笺”。
2.密钥分发
香农的定理听起来好像已经解决了保密通信的问题,但其实没有。真正的难题在于,怎么把密钥从一方传给另一方?
2.密码体制
1.对称密码体制
定义:通信双方都知道同一组密钥,A用它将明文转换成密文,B用它将密文变换回原文。
《红灯记》、《潜伏》等谍战片中情报人员舍死忘生、殚精竭虑保护和争夺的密码本,就是密钥。
存在的问题
密码本身可以是安全的,但密钥的分发不安全。
密钥分发
在现实生活中,需要第三方的信使来传递。而信使可能被抓(如《红灯记》中的李玉和)或者叛变(如《红岩》中的甫志高),这麻烦就大了。最好是不通过信使,通信双方直接见面分享密钥。但是如果双方可以轻易见面,还要通信干什么?
密钥存储
有人可能会想到一个“机智”的主意,让信使一次就配送尽可能多的密钥,足以在很长时间内使用,比如说足够传输一亿次。但即使先不问“第一亿零一次怎么办”,你也很快就会明白,这只是把泄密的风险从密钥的配送(部分地)转移到密钥的保存而已。只要你手里有个密钥,敌人就可能来偷,而你手里的密钥越多,在使用前保存的时间越长,被偷走的风险就越大。为了把密钥保存的困难降到最低,最好是只保存一次使用的密钥,一拿到立刻就用掉,但那样需要的配送次数又是最多的。难哪!
2.非对称密码体制(公钥密码体制)
目的:为了解决密钥配送和保存的问题
解释:解密只是接收方B的事,发送方A并不需要解密,他们只要能加密就行。
B打造一把“锁”和相应的“钥匙”,把打开的锁公开寄给A。A把文件放到箱子里,用这把锁锁上,再公开把箱子寄给B。B用钥匙打开箱子,信息传输就完成了。如果有敌对者截获了箱子,他没有钥匙打不开锁,仍然无法得到文件。这里的“锁”是公开的,任何人都能得到,所以叫做“公钥”,而“钥匙”只在B手里有,所以叫做“私钥”。
这种巧妙的思想,实现的关键在于:有了私钥可以很容易地得到公钥,而有了公钥却很难得到私钥。就是说,有些事情沿着一个方向操作很容易,逆向操作却非常困难,“易守难攻”。
因数分解就是一个典型例子。这就是因数分解能用于密码术的原因,上文所述的RSA密码体系就以此为基础。
问题:密钥可以找到数学方法破解(尽管很难)
传统密码术的困境
对称密码体制本身是安全的,但分发密钥的信使是大漏洞。非对称密码体制不需要信使,但你又会担心它被数学方法破解。两难。
量子密码术
原理
量子密码术其实是回到对称密码体制,但取消信使。也就是说,不通过信使,就能让双方直接共享密钥。这样就吸收了对称和非对称两种密码体制的优点,克服了它们的缺点,实现了一种真正无懈可击的保密通信。
实现
1.量子密钥,是在双方建立通信之后,通过双方的一系列操作产生出来的。利用量子力学的特性,可以使双方同时在各自手里产生一串随机数,而且不用看对方的数据,就能确定对方的随机数序列和自己的随机数序列是完全相同的。这串随机数序列就被用作密钥。量子密钥的产生过程,同时就是分发过程,——这就是量子密码术不需要信使的原因。
2.量子密钥的特点,还可以再解释得详细一点。量子密钥是一串随机的字符串,长度可以任意长,而且每次需要传输信息时都重新产生一段密钥,这样就完全满足了香农定理的三个要求(密钥随机,长度不低于明文,一次一密),因此用量子密钥加密后的密文是不可破译的。
3.双方都有了密钥之后,剩下的事情就跟经典的通信完全相同了:A把明文用密钥编码成密文,然后用任意的通信方式发给B。“任意的”通信方式的意思就是“怎么都行”:可以用电话,可以用电报,可以用电子邮件,甚至用平信都行。香农的定理保证了这一步不怕任何敌人,因为截获了也破译不了。
量子保密通信的全过程包括两步。 第一步是密钥的产生,这一步用到量子力学的特性,需要特别的方案和设备。第二步是密文的传输,这一步就是普通的通信,可以利用任何现成的通信方式和设施。
关键:量子密钥分发
什么样的操作,能在通信双方产生一段相同的随机数序列呢?
我们可以想到的是,利用量子纠缠,正如EPR实验,A测量粒子1得到的是一个随机数,B测量粒子2得到的也是一个随机数,只不过这两个随机数必然相等而已。
实际上,量子密码术有若干种实现方案,有些用到量子纠缠,有些不用量子纠缠。量子纠缠是个可选项,而不是必要条件。
实际情况是,在“三大奥义”中,量子密码术只需要前两个(叠加、测量)就够了,不需要第三个(纠缠)。
原因是:量子纠缠是一种多粒子体系的现象,而对于实验来说,操纵多个粒子肯定比操纵一个粒子困难。所以,只要有单粒子的方案,人们必然会优先用单粒子方案。实际情况正是如此,绝大多数量子密码术的实验都是用单粒子方案做的,这样才能达到最优的效果。
如何理解?
1.量子密码术方案(协议)
利用EPR对的方案叫做EPR协议
单粒子的方案包括BB84协议、B92协议、诱骗态协议等等
2.以BB84协议为例,通过对改协议的讲解,方便理解量子密码术的精髓
前置讲解
在BB84协议中,用到光子的四个状态:|0>、|1>、|+>和|->。Hi,在实验上,这四个状态是用光子的偏振(回顾一下,偏振方向就是电场所在的方向)来表示的,分别对应光子的偏振处于0度、90度、45度和135度。
|0>和|1>这两个态构成一个基组,|+>和|->这两个态构成另一个基组。在某个基组下测量这个基组中的状态,比如说在|0>和|1>的基组中测量|0>,那么结果不变,测完以后还是|0>这个态。在某个基组下测量这个基组之外的状态,比如说在|0>和|1>的基组中测量|+>,那么结果必然改变,以一半的概率变成|0>,一半的概率变成|1>。
该协议的具体操作过程(比较复杂)
1.A拿一个随机数发生器(通俗地说就是掷硬币),产生一个随机数0或者1(让我们把它记作a),根据这个随机数决定选择哪个基组:得到0就用|0>和|1>的基组,得到1就用|+>和|->的基组。选定基组之后,再产生一个随机数(记作a′),根据这第二个随机数决定在基组中选择哪个状态:得到0就在|0>和|1>中选择|0>或者在|+>和|->中选择|+>,得到1就在|0>和|1>中选择|1>或者在|+>和|->中选择|->。经过这样双重的随机选择之后,A把选定状态的光子发送出去。
2.B收到光子的时候,并不知道它属于哪个基组。他怎么办呢?他可以猜测。B也拿一个随机数发生器,产生一个随机数(记作b),得到0的时候就在|0>和|1>的基组中测量,得到1的时候就在|+>和|->的基组中测量。B测得|0>或者|+>就记下一个0,测得|1>或者|->就记下一个1,我们把这个数记为b′。
3.如果B猜对了基组,a = b,那么光子的状态就是B的基组中的一个,所以测量以后不会变,a′必然等于b′。而如果B猜错了基组,a ≠ b,那么光子的状态就不是B的基组中的一个,所以测量后会突变,a′和b′就不一定相等了(有一半的概率不同)。
4.把这样的操作重复若干次,双方发送和测量若干个光子。结束后,双方公布自己的a和b随机数序列(“公布”的意思就是对全世界公开,就是这么任性~),比如说a的序列是0110,b的序列是1100。然后找出其中相同的部分,在这个例子里就是第二位(1)和第四位(0)。现在我们知道了,在第二位和第四位,a′和b′必然是相同的!A和B把各自手里第二位和第四位的a′和b′记下来,这个随机数序列就可以用作密钥。如果发送和接收n个光子,由于B猜对基组的概率是一半,就会产生一个长度约为n/2位的密钥。至于a、b两个序列中不同的部分,在这个例子中就是第一位(0对1)和第三位(1对0),它们对应的a′和b′有可能不同,所以我们就不去看它们了,这部分数据直接抛弃。
5.防窃听,以上是正常的通信,如果有人窃听怎么办呢?
具体方法
让我们把这个窃听者称为E(联想英文单词evil,“邪恶的”)。料敌从宽,我们还假设E非常神通广大,A发给B的每一个光子都先落到了他手里。BB84协议有一个办法,使得即使在这种最不利的情况下,E也偷不走情报。
什么办法呢?站在E的角度上想一想。如果E只是把这个光子拿走,那么他只是阻断了A、B之间的通信,仍然拿不到任何信息。E希望的是,自己知道这个光子的状态,然后把这个光子放过去,让B去接收。这样A和B看不出任何异样,不知道E在窃听,而在A和B公布a和b序列后,E看自己手上的光子状态序列,也就知道了他们的密钥。 但是E的困难在于,他要知道当前这个光子处在什么状态,就要做测量。可是他不知道该用哪个基组测量,那么他只能猜测。这就有一半的概率猜错,猜错以后就会改变光子的状态。 例如A发出的状态是|+>(这对应于a= 1, a′ = 0),E用|0>和|1>的基组来测量|+>,就会以一半的概率把它变成|0>,一半的概率把它变成|1>,然后B再去测量这个光子。如果B用的基组是|0>和|1>(b = 0),公布后会发现这里a ≠ b,这个数据就被抛弃。而如果B用的基组是|+>和|->(b = 1),公布后会发现这里a = b, 这个数据要保留。这时b′等于什么呢?无论是|0>还是|1>,在|+>和|->的基组下测量时都以一半的概率变成|+>(b′ = 0),一半的概率变成|->(b′ = 1)。因此,a′和b′有一半的概率出现不同。 稍微想一下,你就会发现这是普遍的结果:只要E猜错了基组,a′和b′就会有一半的概率不同。E猜错基组的概率是一半,所以总而言之,在E做了测量的情况下a′和b′不同的概率是1/2 × 1/2= 1/4。这就是窃听行为的蛛丝马迹。 那么,通信方的应对策略就呼之欲出了。为了知道有没有窃听,A和B在得到a′和b′序列后,再挑选一段公布。这是BB84协议中的第二次公布。你看,有时为了保密,我们必须要“公布”,而且“公布”会成为一个威力巨大的保密武器。假如在公布的序列中出现了不同,那么他们就知道有人在窃听,这次通信作废。 这样做的效率怎么样呢?公布一个字符,E蒙混过关的几率是3/4。公布两个字符,就是3/4的平方。如果公布m个字符,E蒙混过关的概率就是3/4的m次方。这个概率随着m的增加迅速接近于0,例如当m = 100时,只剩下3.2× 10-13。因此,如果公布了很长一段都完全相同,那么就可以以接近100%的置信度确认没有窃听,通信双方就把a′和b′序列中剩下的部分作为密钥。
如果发现窃听
被动:如果有多条信道的话,你可以换一条信道,除非敌人把所有的信道都卡死了。
主动:量子密码术跟一些光学技术联用,可以确定窃听者的位置,所以你可以通知警察、国安、军队,把窃听者抓起来。
这是量子密码术特有的一个巨大优势,传统密码术首先就发现不了窃听,更不用说定位了。
量子密码术的安全性
“绝对安全”表现在五个方面
1.密文即使被截获了也不会被破译;
2.不会被计算技术的进步破解;
3.没有传递密钥的信使;
4.可以在每次使用前现场产生密钥,平时不需要保存密钥;
5.在密钥生成过程中如果有人窃听,会被通信方发现。
传统密码术的表现
传统密码术或者只能满足第一点、第三点和第四点(非对称密码体制,第一点依赖于数学复杂性,不是严格满足的),或者只能满足第一点和第二点(对称密码体制),无论如何都无法满足第五点。
量子密码术是目前所知唯一的既不需要信使、也不惧怕算法进步的保密方法,更是唯一的能发现窃听的保密方法。
如果说可以破解公钥密码体系的量子计算机是最强的矛,那么能够抵御一切攻击的量子密码术就是最强的盾。以子之矛攻子之盾,谁胜?盾胜!
量子密码术的工程成果
1.原理已解决,工程还存在问题。以上是量子密码术的基本原理。为了把这些原理付诸实践,还有大量的工程技术性质的问题。
2.为了防通信窃密,传输距离受限。
虽然原理上“绝对安全”,但还存在风险
产生风险的原因
1.偷信号
举个例子,BB84协议要求A每次只发一个光子。但实际的单光子光源效率很低,用它会导致成码率非常低,比如说几百年才能生成一个字节的密钥。绝大多数实验用的是效率高的激光光源,但激光不是严格的单光子,有一定的几率在一个脉冲中出现多个光子,这就给窃听者留下了可乘之机。
原则上,窃听者E可以在遇到单光子时拦截下来不让通过,在遇到多个光子时拿走一个,让其余的光子通过。通信双方难以分辨光子的减少是来自窃听还是来自信道的自然损耗,于是在他们公布a和b序列之后,E就知道了该用什么基组去测量自己偷走的这些光子,然后就可以得到密钥。这一招叫做“光子数分离攻击”。
实际上,与经典通信窃密的基本思路是一样的:从大量的信号中偷走一部分,让通信方无法察觉。
许多影视作品中有类似这样的情节:相距遥远的两地之间的通信是通过一根巨大的光缆实施的,窃听者知道这条光缆经过某栋建筑,就把这栋建筑租下来,在里面布置设备,从光缆上分走了一部分信号。
2.攻击探测器
对量子密码术的另外一类攻击是在探测器上,实际体系中大部分漏洞来自于此。例如,原则上用强激光照射接收器可以将其“致盲”,然后就可以控制它,欺骗通信者。
量子密码术之所以要用单光子,妙处正在于此。回顾一下本文开头“量子”的概念就能理解,单个光子已经是最小的单元了,所以窃听者无法只偷一部分。
实验条件的种种不完美之处,会给量子密码术的安全传输距离设置一个上限,超过这个距离就可能泄密。
3.问题的解决
1.在量子密码术最初的实验中,传输距离不到1米。到21世纪初,安全传输距离提高到了10公里的量级。但由于上述的激光不是单光子的问题,安全传输距离无法提高到20公里以上。当时许多科学家认为这项技术已经到头了,对它失去了兴趣。
2.然而,2003-2005年,韩国科学家黄元瑛(Hwang W. Y.)和中国科学家王向斌、罗开广等人想出了一种巧妙的办法,就是前面提到的“诱骗态协议”。激光光源发射的光子数有一定的分布,发射许多光脉冲就相当于发射一些单光子脉冲、一些多光子脉冲和一些零光子脉冲(也就是没发)。在脉冲的平均光子数小于1时,诱骗态方法可以使得实验等效于只用单光子脉冲。对于量子密码术的安全性而言,这相当于把实际的不完美的光源变成了完美的单光子源。
3.克服了这个重要障碍以后,量子密码术的安全传输距离开始迅猛增长,不断刷新纪录。自那以来,大多数纪录都是中国科学技术大学的实验团队创造的。
4.应对针对探测器的攻击,为了应对攻击,人们又发明了安全性与测量仪器无关的量子密钥分发技术。这个新技术是中国科学技术大学潘建伟团队率先实现的,被评为2013年全球物理学十大进展和2014年中国十大科技进展之一。
4.成果
2016年8月16日,墨子号量子卫星上天时,光纤中的安全传输距离已经超过了200公里。2016年11月,中国科学技术大学、清华大学、中科院上海微系统与信息技术研究所、济南量子技术研究院等单位合作,又把安全传输距离提高到了404公里,而且在102公里处的安全成码率已经足以保证安全的语音通话。也就是说,间隔102公里的量子保密电话已经是在技术上可行的了。
为了实现更远距离的量子通信,有两种解决思路,都是使用中继器
量子中继器原理
假设我们有一串节点,记作1号、2号、3号……,最后是N号。先在1号和2号之间建立量子通信,产生一个密钥,记作k1。然后在2号和3号之间建立量子通信,产生一个密钥,记作k2。2号把k1作为待传输的明文,用k2对它加密,传输给3号。3号同样把k1传输给4号,4号把k1传输给5号,……一路把k1传输给N号。最后1号把真正要传输的信息用k1加密,用任意的通信方式传给N号,就完成了。Give me five! 如果你要问,带中继的量子密码术安全性如何?回答是:这取决于你跟谁比。好比你问,关羽的武力怎么样?那么跟吕布比和跟颜良比,答案完全不同。(颜良:我招谁惹谁了?) 跟两点之间直接连接的量子密码术相比,安全性是下降了。因为现在所有的N个节点都知道密钥k1,你必须守住中间的N-2个中继器,任何一个中继器被敌方攻破都会泄密。 但是跟经典通信比,安全性还是要高得多。因为在经典通信中,漫长的通信线路上每一点都可能泄密,每一点你都要防御,这是个令人望而生畏的任务。现在你只需要防守明确的N-2个节点,防线缩短了很多,安全性自然大大提升。
一条技术路线是直截了当容易想到的,每隔一两百公里加一个中继器。
我国已经基本建设好了量子保密通信“京沪干线”,过不久也许你就会听到它正式开通的消息。京沪干线实际做的事情,就是在北京、济南、合肥、上海的内部量子网络的基础上,通过几十个中继节点把它们连接起来。这样,就可以在两千公里的范围内,实现量子保密通信。
另一条技术路线,就玩得大了,玩到天上去了:用卫星作中继器。
优点
用卫星作中继器,优点是显而易见的:比如说卫星这个时刻在中国上空,下个时刻在欧洲上空,那么就可以实现中国和欧洲之间的量子保密通信。将来建成20颗卫星的星座,就可以覆盖全球。
困难
1.以前光子的传输都通过光纤,现在什么介质都不用,而且一个光脉冲只能发一个光子,这样的“自由空间传输”能收到信号吗?
2.卫星跟地面处于高速的相对运动之中,把双方的探测器对准,是天地之间的“针尖对麦芒”,精度相当于“在五十公里以外把一枚一角硬币扔进一列全速行驶的高铁上的一个矿泉水瓶里”(请一口气念完这个句子!)。以这么高的对准精度,接收弱得不能再弱的光信号(真的不能再弱了,再弱就什么都没有了),这是多么大的挑战!
解决办法
1.关于第一个问题,自由空间传输其实完全是可行的。光子在真空中基本没有损耗,所以只需要考虑在大气层中的损耗就行了。而在某些波段,光子穿过10公里厚的大气层只损耗20%。所以在同样相距上千公里的情况下,自由空间传输的效率比光纤高得多,前者只有一小部分距离(大气层)有损耗,后者每一寸光纤都实打实地有损耗。2012年,中国科学技术大学潘建伟团队就在青海湖的湖心岛实现了百公里级的双向量子纠缠分发和量子隐形传态,验证了量子通信卫星的可行性。
2.关于第二个问题,星地对准的控制难度虽然高,但也在当代技术的能力范围之内。墨子号发射之后,已经多次跟地面站实现了对准。星地对准不是用生成密钥的那个单光子来做的,而是用另外的信标光。你不可能看见单光子,因为这个单光子如果进了你的眼睛,就不会被探测器收到了。你看到的红色和绿色的光,是信标光。
新成果
2017年6月,中国科学技术大学潘建伟、彭承志等人在《科学》杂志上发表文章,宣布在国际上率先实现了千公里级的星地双向量子纠缠分发,并以此为基础对量子力学的基本原理进行了实验检验(检验的结果,自然是“量子力学还是对的”)。2017年8月,他们又在《自然》杂志上发表文章,在国际上首次实现了从卫星到地面的量子密钥分发和从地面到卫星的量子隐形传态。至此,墨子号的三大科学目标提前并圆满实现。
有了以上的背景知识,你就可以看明白报道中的科学术语和技术指标了:“墨子号”量子卫星过境时,与河北兴隆地面光学站建立光链路,通信距离从645公里到1200公里。在1200公里通信距离上,星地量子密钥的传输效率比同等距离地面光纤信道高20个数量级(万亿亿倍)。卫星上量子诱骗态光源平均每秒发送4000万个信号光子,一次过轨对接实验可生成300 kbit的安全密钥,平均成码率可达1.1 kbps。