导图社区 晶体结构
晶体结构的思维导图,分享内容有:晶体的宏观特性、空间点阵、晶体的周期性、密堆积与配位数、几种典型的晶体结构、晶向指数与晶面指数、晶体的宏观对称性、晶体的微观对称性、倒格子、晶体结构的实验确定、准晶。
社区模板帮助中心,点此进入>>
论语孔子简单思维导图
《傅雷家书》思维导图
《童年》读书笔记
《茶馆》思维导图
《朝花夕拾》篇目思维导图
《昆虫记》思维导图
《安徒生童话》思维导图
《鲁滨逊漂流记》读书笔记
《这样读书就够了》读书笔记
妈妈必读:一张0-1岁孩子认知发展的精确时间表
第一章-晶体结构
晶体的宏观特性
1.长程有序
晶体材料具有的共同特征
2.自限性与解理性
自发地形成封闭几何多面体的特性,以及沿某些确定方向的晶面劈裂的性质
3.晶体的宏观特性
虽然同种晶体由于生长条件不同,但相应的两晶面之间的夹角总是守恒
4.各向异性
晶体的物理性质在不同方向上存在着差异
5.对称性
许多晶体关于一个面或者一个轴对称
6.周期性
晶体结构由一个基本结构单元在空间重复堆砌而成
空间点阵
1.格点与基元
2.晶体结构的周期性
晶体结构=点阵+基元
3.原胞与晶胞
原胞:晶体体积最小的重复单元,各自体积相等
晶胞:反应周期性的重复单元
4.简单格子与复式格子
简单格子(布拉维格子):一种原子组成,基元中仅包含一个原子
复试格子:由多个简单格子套构而成的晶格
晶体的周期性
1.布拉维格子的定义
Rn=n1a1+n2a2+n3a3,其中R、a为矢量,n取整数。
2.一维布拉维格子
3.一维复式格子
4.三维情况的原胞
5.三维布拉维晶胞
简立方
体心立方
面心立方
密堆积与配位数
1.密堆积
配位数:原子或离子周围最邻近的原子或离子数
2.密堆积结构
六方密堆积
立方密堆积
3.最大配位数
密堆积所对应的配位数
4.致密度
n=晶胞中原子的体积之和/晶胞体积
几种典型的晶体结构
1.立方晶系的布拉维晶胞
2.立方晶系的复式格子
氯化钠结构:面心立方的复式格子晶体结构
氯化铯结构:布拉维格子为简立方
金刚石结构:两个面心立方子晶格沿立方体对角线平移1/4对角线长度相互穿套而成的复试格子
闪锌矿型结构:面心立方子晶格沿立方体对角线平移1/4对角线长度相互穿套而成的复试格子
钙钛矿结构:简立方格子套构而成的复式格子
C60晶体结构
3.六方密堆积结构
纤维锌矿型结构
晶向指数与晶面指数
1.晶向与晶向指数
晶向:晶列的取向
晶向指数:晶格中任一格点A的位矢:Rl=l1a1+l2a2+l3a3,其中R、a为矢量,l为约化整数,记为【l1l2l3】
2.晶面与晶面指数
晶面:无限多的平行晶列平移形成的
晶面指数:某一晶面在基矢方向截距为ra,sb,tc.将系数r,s,t取倒数取h,k,l,写作(hkl)
晶体的宏观对称性
1.晶体的对称性与对称操作
2.对称操作的变换关系
转动
对称中心与反演
对称面和反映
3.晶格转轴的度数
写成2π/n,n取1、2、3、4、6
4.晶体的基本对称操作
晶体的微观对称性
1.晶体的微观对称元素
平移和平移轴
螺旋旋转与螺旋轴
滑移反映和滑移面
倒格子
1.倒格子的概念
正格矢与倒格矢
正格矢Rl•倒格矢Gh=2πn,n为整数
它们的基矢有如下关系:ai•bj=2π(i=j);=0(i≠j)
两者关系
bi=2π(aj×ak)/Ω,ijk遵循指标循环
2.倒格子空间
正格子与倒格子原胞体积之积为(2π)³
正格子晶面族与倒格矢正交
倒格矢长度与晶面族面间距的倒数成反比
3.布里渊区
一维晶格点阵
二维正方结构晶格点阵
三维简立方结构晶格点阵
体心立方结构与面心立方晶格点阵
晶体结构的实验确定
1.X射线衍射基本原理
劳厄方程:k-k0=nGh,n为整数,G,k为矢量
布拉格公式:2d(h1h2h3)sinθ=nλ,其中d(h1h2h3)为晶面族的面间距
2.反射球
3.原子形状因子与几何结构因子
原子形状因子
几何结构因子与消光现象
4.X射线衍射实验的基本方法
劳厄法
转动单晶法
粉末法
5.电子衍射与中子衍射
准晶
介于周期晶体和非晶体玻璃的一种新的固体物质形态