导图社区 旋转导图笔记
九年级上册低二十三章旋转,讲述了旋转的定义、旋转三要素、旋转的性质、中心对称、中心对称图形、旋转作图的一般步骤。
道法九年级上册第一单元富强与创新思维导图,可以用于课堂教学思维引导,也是同步复习速记利器,值得收藏。
九年级下册数学二次函数的相关知识点,包括二次函数的定义、平移、图像和性质、表达式、二次函数与一元二次方程、实际问题等。
社区模板帮助中心,点此进入>>
《老人与海》思维导图
《傅雷家书》思维导图
《西游记》思维导图
《水浒传》思维导图
《茶馆》思维导图
《朝花夕拾》篇目思维导图
《红星照耀中国》书籍介绍思维导图
初中物理质量与密度课程导图
桃花源记思维导图
曹刿论战思维导图
旋转
定义
把一个平面图形绕着平面内某一个点A转动一个角度,叫做图形的旋转
旋转中心
点A
旋转角
转动的角叫做旋转角(∠CAC',∠BAB')
对应点
如果图形上的点C经过旋转变为点C',那么这两个点叫做旋转的对应点
旋转三要素
旋转方向
顺时针
逆时针
旋转角度
旋转的性质
对应点到旋转中心的距离相等
对应点与旋转中心所连线段构成的夹角等于旋转角
旋转前后的图形全等
旋转作图的一般步骤
1.确定旋转中心
2.找出图形的关键点
3.作出关键点经旋转后的对应点
已知旋转前后的两个图形,确定旋转中心
①连接两组对应点
②作对应点所连线段的垂直平分线
③交点即为所求
关于原点对称的点的坐标
关于谁对称,谁不变,关于原点对称,都改变
两个点关于原点对称时,他们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)
做关于原点对称图形的一般步骤
1.写出图形顶点坐标
2.写出各顶点关于原点的对称点坐标
3.描点
4.顺次连接
5.写出结论
中心对称图形
把一个图形绕着某一个点旋转180°,如果旋转后的图形能与原图形重合,我们就说这个图形是中心对称图形
如果将中心对称的两个图形看成一个图形,那么这个图形就是中心对称图形
中心对称
一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就称这两个图形关于这个点对称或中心对称
对称中心
这个点叫作对称中心(简称中心)
对称点
这两个图形在旋转后能重合的对应点叫做对于对称中心的对称点
性质
中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分 即:对称中心是对称点所连线段的中点
反过来,如果某两个图形的对应点所连线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称
一个中心对称图形,如果把他对称的部分看成两个图形,那么他们又关于中心对称
正六边形EFGHIJ是中心对称图形
△ABC与△A′B′C′关于点D成中心对称