导图社区 多元函数积分学
高数太难学不会?高数多元函数微分考点不清楚?多元函数微分法及应用思维导图学习笔记,完整梳理多元函数极限问题、连续性问题、偏导数和全微分相关知识,让你精准把握考点,复习更高效。
社区模板帮助中心,点此进入>>
英语词性
法理
刑法总则
【华政插班生】文学常识-先秦
【华政插班生】文学常识-秦汉
文学常识:魏晋南北朝
【华政插班生】文学常识-隋唐五代
民法分论
日语高考動詞の活用
第14章DNA的生物合成读书笔记
多元函数积分学
二重积分的概念和性质
引例
求曲顶柱体的体积
求质量非均匀分布的平面包办的质量
方法:1.分割 2.近似替代 3.求和 4.取极限
定义
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域,并以表示第个子域的面积。在上任取一点作和。如果当各个子域的直径中的最大值趋于零时,此和式的极限存在,且该极限值与区域D的分法及的取法无关,则称此极限为函数在区域上的二重积分
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
性质
性质1(积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差)
性质2(积分满足数乘) 被积函数的常系数因子可以提到积分号外
性质3、 如果在区域D上有f(x,y)≦g(x,y),则
性质4、 设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积
如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
二重积分的计算
X-型和Y型区域
第一种方法:如果从二重积分的式子上来看,哪个变量(如x)的上下限都是常数而另一个变量(如y)上下限全是某个(如关于x的)函数,就是哪个(x)型区域,如果从区域的图像上看,看x和y轴方向上哪一个变量的取值范围是被常数确定就是哪个类型的。
第二种方法:打算先对x积分则用平行于x轴的直线分割区域,以上下两切点为分界点,左边的曲线为x=φ1(y),右边的曲线为x=φ2(y),不过如果非要区分的话,曲边形有平行于x轴的直线则为Y型区域;X型则反过来。
对称性
对于Dxy是关于y轴对称的区域,满足∫∫f(x,y)dxdy=∫∫f(-x, y)dxdy。 如果Dxy是关于y=x对称的区域,那么∫∫f(x,y)dxdy=∫∫f(y, x)dxdy(所以如果积分函数满足f(y,x)= -f(x,y),就能得出∫∫f(x,y)dxdy=0)。 如果Dxy是关于y=-x对称,那么∫∫f(x,y)dxdy=∫∫f(-y, -x)dxdy。
极坐标
1.变量代换x=rcost,y=rsint
2.求出极坐标系下积分局域的表达形式(讲x,y代入)
3.将被积函数做变量替换,同时dxdy=-rsintcostdtdr(Jacobi行列式消去了一个r,所以是r的一次方)
4.在新的积分区域内求二重积分
三重积分的计算
直角坐标系法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。 ①区域条件:对积分区域Ω无限制; ②函数条件:对f(x,y,z)无限制
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。 ①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成 ②函数条件:f(x,y)仅为一个变量的函数。
柱面坐标法
适用被积区域Ω的投影为圆时,依具体函数设定,如设
①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;
②函数条件:f(x,y,z)为含有与(或另两种形式)相关的项。
球面坐标系法
适用于被积区域Ω包含球的一部分
①区域条件:积分区域为球形或球形的一部分,锥面也可以;
②函数条件:f(x,y,z)含有与相关的项
三重积分的概念和性质
求质量非均匀分布的物体的质量
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
三重积分的几何意义是不均匀的空间物体的质量。三重积分就是立体的质量。当积分函数为1时,就是其密度分布均匀且为1,质量就等于其体积值。当积分函数不为1时,说明密度分布不均匀。
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz